精英家教网 > 高中数学 > 题目详情

【题目】如图,过圆O外一点P作圆的切线PC,切点为C,割线PAB、割线PEF分别交圆O于A与B、E与F.已知PB的垂直平分线DE与圆O相切.

(1)求证:DE∥BF;
(2)若 ,DE=1,求PB的长.

【答案】
(1)证明:连接BE,

∵DE与圆O相切,

∴由弦切角定理可得,∠BED=∠BFE

又∵DE垂直平分BP,∴∠BED=∠DEP

∴∠BFE=∠DEP,

∴DE∥BF


(2)解:由切割线定理,得 PC2=PE×PF=12,

∵D为线段BP的中点,DE∥BF;

∴PF=2PE,

∴PF=2

∵DE=1,DE∥BF,PB的垂直平分线DE与圆O相切.

∴DE为Rt△PBF的中位线,

∴DE=2,

在Rt△PBF中,由勾股定理,可得,PB=2


【解析】(1)由题意可得,∠BED=∠BFE,∠BED=∠DEP,即可证得;(2)由切割线定理,勾股定理,即可计算解得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出S的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (φ为参数,0≤φ≤π),曲线C2的参数方程为 (t为参数).
(1)求C1的普通方程并指出它的轨迹;
(2)以O为极点,x轴的非负半轴为极轴建立极坐标系,射线OM:θ= 与半圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线a、b和平面,下列说法中正确的有______

,则

,则

,则

若直线,直线,则

若直线a在平面外,则

直线a平行于平面内的无数条直线,则

若直线,那么直线a就平行于平面内的无数条直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(α>b>0)的右焦点到直线x﹣y+3 =0的距离为5,且椭圆的一个长轴端点与一个短轴端点间的距离为
(1)求椭圆C的方程;
(2)在x轴上是否存在点Q,使得过Q的直线与椭圆C交于A、B两点,且满足 + 为定值?若存在,请求出定值,并求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C的极坐标方程为ρ=6cosθ+2sinθ,直线l的参数方程为 (t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设点Q(1,2),直线l与曲线C交于A,B两点,求|QA||QB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆两点,线段的中点为,射线交椭圆于点,交直线于点.

Ⅰ)求的最小值;

Ⅱ)若

求证:直线过定点;

ii)试问点能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区业余足球运动员共有15000人,其中男运动员9000人,女运动员6000人,为调查该地区业余足球运动员每周平均踢足球占用时间的情况,采用分层抽样的方法,收集300位业务足球运动员每周平均踢足球占用时间的样本数据(单位:小时)
得到业余足球运动员每周平均踢足球所占用时间的频率分布直方图(如图所示),其中样本数据分组区间为:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
将“业务运动员的每周平均踢足球时间所占用时间超过4小时”
定义为“热爱足球”.
附:K2=

P(K2≥k0

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879


(1)应收集多少位女运动员样本数据?
(2)估计该地区每周平均踢足球所占用时间超过4个小时的概率.
(3)在样本数据中,有80位女运动员“热爱足球”.请画出“热爱足球与性别”列联表,并判断是否有99%的把握认为“热爱足球与性别有关”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 ).

(1)当时,求曲线 在点 处的切线方程;

(2)求函数 在区间 上的最小值.

查看答案和解析>>

同步练习册答案