精英家教网 > 高中数学 > 题目详情

【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算:电费每月用电不超过100度时,按每度0.57元计算;每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.

(Ⅰ)设月用电度时,应交电费元,写出关于的函数关系式;

(Ⅱ)小明家第一季度缴纳电费情况如下:

月份

一月

二月

三月

合计

交费金额

76元

63元

45.6元

184.6元

问小明家第一季度共用电多少度?

【答案】(1);(2)330度.

【解析】试题分析:(1)由题意可知关于的函数关系式为分段函数,而且是关于的一次方程.由题意易得此方程.(2)当时, ,由表可知小明家只有三月份用电小于100度,其他两个月均超过100度.将各月电费金额代入相应解析式即可求得当月用电量.

试题解析:(1)当时,

时,

所以所求函数式为

2)据题意,

一月份: ,得(度),

二月份: ,得(度),

三月份: ,得(度).

所以第一季度共用电:

(度).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:

td style="width:16.2pt; padding:3.75pt 5.4pt; vertical-align:middle">

15

6

5

4

16

3

5

8

8

2

17

2

3

6

8

8

8

6

5

18

5

7

19

2

3

(Ⅰ)计算上线考生中抽取的男生成绩的方差;(结果精确到小数点后一位)

(Ⅱ)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间20名工人年龄数据如下表:

年龄(岁)

19

24

26

30

34

35

40

合计

工人数(人)

1

3

3

5

4

3

1

20

(1)求这20名工人年龄的众数与平均数;

(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;

(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)讨论函数的单调性;

(2)若存在两个极值点,求证:无论实数取什么值都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.

(1)已知a=3,求(RP)∩Q

(2)若PQQ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求证:当x>1时,f(x)>0成立;

(2)若t> ,判断函数g(x)=x[f(x)+t+1]的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)恒成立,求实数的取值范围;

(2)是否存在整数,使得函数在区间上存在极小值,若存在,求出所有整数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF∠BAD∠CDA90°M是线段AE上的动点.

1)试确定点M的位置,使AC∥平面DMF,并说明理由;

2)在(1)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现从中随机抽取100人的数学与地理的水平测试成绩如下表:

成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.

)若在该样本中,数学成绩优秀率是30%,求的值;

)已知,求数学成绩为优秀的人数比及格的人数少的概率.

查看答案和解析>>

同步练习册答案