精英家教网 > 高中数学 > 题目详情

【题目】在一次电视节目的答题游戏中,题型为选择题,只有AB两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记该选手答完n道题后总得分为”.

1)当时,记,求的分布列及数学期望;

2)当时,求的概率.

【答案】1)见解析,02

【解析】

1即该选手答完3道题后总得分,可能出现的情况为3道题都答对,答对2道答错1,答对1道答错2,3道题都答错,进而求解即可;

(2)当时,即答完8题后,正确的题数为5题,错误的题数是3,,则第一题答对,第二题第三题至少有一道答对,进而求解.

解:(1的取值可能为,,1,3,又因为,

,,

,,

所以的分布列为:

1

3

所以

2)当时,即答完8题后,正确的题数为5题,错误的题数是3,

又已知,第一题答对,

若第二题回答正确,则其余6题可任意答对3题;

若第二题回答错误,第三题回答正确,则后5题可任意答对题,

此时的概率为(或.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有四座城市,其中的正东方向,且与相距的北偏东方向,且与相距的北偏东方向,且与相距,一架飞机从城市出发以的速度向城市飞行,飞行了,接到命令改变航向,飞向城市,此时飞机距离城市有(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)若,且对任意恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

是偶函数;②在区间单调递减;

个零点;④的最大值为.

其中所有正确结论的编号是(

A.①②④B.②④C.①④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:

①当时,存在实数m,使函数恰有5个不同的零点;

②若,函数的零点不超过4个,则

③对,函数恰有4个不同的零点,且这4个零点可以组成等差数列.

其中,正确命题的序号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)设,若对任意,且,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知平行于轴的动直线交抛物线 于点,点的焦点.圆心不在轴上的圆与直线 轴都相切,设的轨迹为曲线.

(1)求曲线的方程;

(2)若直线与曲线相切于点,过且垂直于的直线为,直线 分别与轴相交于点 .当线段的长度最小时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点轴的平行线交抛物线的准线于,直线交抛物线于点.

(Ⅰ)求抛物线的方程;

(Ⅱ)求证:直线过定点,并求出此定点的坐标.

【答案】I;(II证明见解析.

【解析】试题分析:(Ⅰ)将曲线化为标准方程,可求得的焦点坐标分别为,可得,所以,即抛物线的方程为;(Ⅱ)结合(Ⅰ),可设,得,从而直线的方程为,联立直线与抛物线方程得,解得,直线的方程为,整理得的方程为,此时直线恒过定点.

试题解析:由曲线,化为标准方程可得, 所以曲线是焦点在轴上的双曲线,其中,故的焦点坐标分别为,因为抛物线的焦点坐标为,由题意知,所以,即抛物线的方程为.

)由()知抛物线的准线方程为,设,显然.故,从而直线的方程为,联立直线与抛物线方程得解得

,即时,直线的方程为

,即时,直线的方程为,整理得的方程为,此时直线恒过定点 也在直线的方程为上,故直线的方程恒过定点.

型】解答
束】
21

【题目】已知函数

(Ⅰ)当时,求函数的单调递减区间;

(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;

(Ⅲ)若数列满足 ,记的前项和为,求证: .

查看答案和解析>>

同步练习册答案