精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值点,且,证明: .

【答案】1)见解析(2见解析

【解析】试题分析:(1)先求导数,再研究二次方程:无根以及两个等根或两个负根时导函数不变号,为单调递增;当两个不等正根时,有三个单调区间,2由极值定义得 ,则化简为一元函数: ,最后根据导数确定其单调性,得其最大值小于.

试题解析:1

所以

1)当时, ,所以上单调递增

2)当时,令

时, 恒成立,即恒成立

所以上单调递增

,即时,

,两根

所以

,

故当时, 上单调递增

时, 上单调递增

上单调递减.

2

由(1)知时, 上单调递增,此时无极值

时,

,设两根,则

其中

上递增,在上递减,在上递增

,所以上单调递减,且

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面,以为邻边作平行四边形,连接,若二面角45°.

1)求证:平面⊥平面

2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数.

(1)求实数的值;

(2)若,不等式上恒成立,求实数的取值范围;

(3)若 上最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是( )

A. 25B. 66C. 91D. 120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中OAD中点.

求直线PB与平面POC所成角的余弦值.

B点到平面PCD的距离.

线段PD上是否存在一点Q,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有6名男医生,4名女医生.

(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,一个地区去一名教师,共有多少种分派方法?

(2)把10名医生分成两组,每组5人且每组都要有女医生,共有多少种不同的分法?若将这两组医生分派到两地去,又有多少种分派方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x∈R),a为正实数.

(1)求函数f(x)的单调区间;

(2)若对,不等式恒成立,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,其中是复数,若集合中任意两数之积及任意一个数的平方仍是中的元素,则集合___________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为,且.

求此抛物线的方程;

过点做直线交抛物线两点,求证:.

查看答案和解析>>

同步练习册答案