精英家教网 > 高中数学 > 题目详情

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球半径为(
A.2
B.
C.
D.2

【答案】C
【解析】解:由三视图知几何体是三棱锥A﹣BCD,为棱长为4的正方体一部分,直观图如图所示:
由正方体的性质可得,AB=AD=BD=4
AC=BC= =2 ,CD= =6,
设三棱锥C﹣ABD的外接球球心是O,设半径是R,
取AB的中点E,连接CE、DE,如图所示:

设OA=OB=OC=OD=R,△ABD是等边三角形,
∴O在底面△ABD的射影是△ABD中心F,
∵DE⊥BE,BE=2 ,∴DE= =
同理可得,CE= ,则满足CE2+DE2=CD2 , 即CE⊥DE,
在RT△CED中,设OF=x,
∵F是等边△ABD的中心,



,解得x=
代入其中一个方程得,R= = =
∴该四面体的外接球半径是
故选:C.
根据三视图知几何体是三棱锥为棱长为4的正方体一部分,画出直观图,由正方体的性质求出棱长、判断出各面形状,画出三棱锥C﹣ABD以及外接球,由△ABD是等边三角形,判断出球心O在△ABD的射影的位置,判断线与线的位置关系,设出未知数画出平面图形,利用勾股定理列出方程组,求出该四面体的外接球半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在棱台中, 分别是棱长为1与2的正三角形,平面平面,四边形为直角梯形, 中点,

(Ⅰ)是否存在实数使得平面?若存在,求出的值;若不存在,请说明理由;

(Ⅱ)在 (Ⅰ)的条件下,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:

序号
(i)

分组
(分数)

组中值
(Gi)

频数
(人数)

频率
(Fi)

1

[60,70)

65

0.10

2

[70,80)

75

20

3

[80,90)

85

0.20

4

[90,100)

95

合计

50

1


(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,其中为自然对数的底数,求函数的单调区间;

(2)若函数既有极大值,又有极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)

如图,四棱锥P-ABCD中,侧面PAD为等比三角形且垂直于底面ABCD EPD的中点.

1)证明:直线 平面PAB

2)点M在棱PC 上,且直线BM与底面ABCD所成锐角为 ,求二面角M-AB-D的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)

在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:

(1)能否出现ACBC的情况?说明理由;

(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC中点,则直线OE与直线PD所成角为(
A.30°
B.60°
C.45°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

同步练习册答案