A. | 10π | B. | 12π | C. | 14π | D. | 16π |
分析 先根据条件求出长方体的三条棱长,再求出长方体ABCD-A1B1C1D1外接球的直径,即可得出结论.
解答 解:由题意设AA1=x,AD=y,则AB=3x,
∵长方体ABCD-A1B1C1D1的体积为6,
∴xy•3x=6,
∴y=$\frac{2}{{x}^{2}}$,
∴AB+AD+AA1=4x+$\frac{2}{{x}^{2}}$≥3$\root{3}{2x•2x•\frac{2}{{x}^{2}}}$=6,
当且仅当2x=$\frac{2}{{x}^{2}}$,即x=1时,取得最小值,
∴长方体ABCD-A1B1C1D1外接球的直径为$\sqrt{1+4+9}$=$\sqrt{14}$,
∴长方体ABCD-A1B1C1D1外接球的表面积=14π,
故选C.
点评 本题考查长方体ABCD-A1B1C1D1外接球的表面积,考查体积的计算,考查基本不等式的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若a+b≠1,则a2+b2<$\frac{1}{2}$ | B. | 若a+b=1,则a2+b2<$\frac{1}{2}$ | ||
C. | 若a2+b2<$\frac{1}{2}$,则a+b≠1 | D. | 若a2+b2≥$\frac{1}{2}$,则a+b=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-6]∪[2,+∞) | B. | (-∞,-4)∪(4,+∞) | C. | [2,+∞) | D. | [-6,2] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com