精英家教网 > 高中数学 > 题目详情
已知f(x)=x2+2x-3,用图象法表示函数g(x)=
f(x)+|f(x)|2
分析:讨论f(x)的范围,化简g(x)=
f(x),f(x)≥0
0    f(x)<0
=
x2+2x-3,x≥1或x≤-3
0            ,-3<x<1
画出函数图象
解答:精英家教网解:当f(x)≤0,即x2+2x-3≤0,
-3≤x≤1时,g(x)=0.
当f(x)>0,即x<-3或x>1时,
g(x)=f(x)=(x+1)2-4,
∴g(x)=
0,-3≤x≤1
(x+1)2-4,x<-3或>1
图象如图所示.
点评:本题主要考查二次函数的图象的画法,其中的关键利用分类讨论的思想化简函数的表达式是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案