精英家教网 > 高中数学 > 题目详情
16.f(x)=x•lg($\frac{1+x}{1-x}$).
(1)证明函数的奇偶性;
(2)判断f(x)在[0,1)上的单调性(只需写出单调性结论,不需要证明过程),并解不等式f(x)>f(2x-1).

分析 (1)根据定义f(-x)=(-x)lg$\frac{1-x}{1+x}$=(-x)lg[$\frac{1+x}{1-x}$]-1=x•lg$\frac{1+x}{1-x}$,得出f(x)为偶函数;
(2)运用f(x)为偶函数,且在[0,1)递增,在(-1,0]递减,列出不等式组求解.

解答 解:(1)∵$\frac{1+x}{1-x}$>0,∴-1<x<1,
即函数f(x)的定义域为(-1,1),
又f(-x)=(-x)lg$\frac{1-x}{1+x}$=(-x)lg[$\frac{1+x}{1-x}$]-1=x•lg$\frac{1+x}{1-x}$,
所以,f(-x)=f(x),
故f(x)为偶函数;
(2)f(x)=xlg$\frac{1+x}{1-x}$为[0,1)上的增函数,
又因为f(x)为偶函数,所以x∈(-1,0]是减函数,
所以,不等式f(x)>f(2x-1)等价为:$\left\{\begin{array}{l}{-1<x<1}\\{-1<2x-1<1}\\{|x|>|2x-1|}\end{array}\right.$,
解得x∈($\frac{1}{3}$,1),
∴原不等式的解集为{x|$\frac{1}{3}$<x<1}.

点评 本题主要考查了函数奇偶性的证明,以及应用函数的奇偶性和单调性解不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若点P(3a-9,a+2)在角α的终边上,且cosα≤0,sinα>0,则实数a的取值范围是(-2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线x2=2py,(p>0)在x=1处的切线方程为2x-2y-1=0,则抛物线的准线为(  )
A.x=-$\frac{1}{2}$B.x=-1C.y=-$\frac{1}{2}$D.y=-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线的焦点是双曲线 16x2-9y2=144的左顶点;求抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的偶函数f(x)的周期为2,0<x<1,f(x)=-log2(1-x),则当1<x<2,下面说法正确的是(  )
A.f(x)单调递增,f(x)<0B.f(x)单调递增,f(x)>0C.f(x)单调递减,f(x)<0D.f(x)单调递减,f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知D,E分别是三棱锥V-ABC的两个侧面VAB,VBC的重心.
(1)证明:DE∥平面ABC;
(2)若该三棱锥的底面ABC是边长为2的正三角形,侧面是以4为腰长的等腰三角形,求三棱锥V-ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,过椭圆的左顶点A作两条互相垂直的直线分别交椭圆与P、Q连接PQ.
(1)问直线PQ是否过一定点,如果经过定点求出该点坐标,否则请说明理由;
(2)求△APQ面积取最大值时,直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线l和两条直线l1:x-3y+10=0,及l2:2x+y-8=0都相交,且这两个交点所成的线段的中点P(0,1),则直线l的方程是2x+3y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在空间中,已知平面α过点(3,0,0)和点(0,4,0)及z轴上一点(0,0,a)(a>0),如果平面α与平面xOy上的夹角为45°,则a=$\frac{12}{5}$.

查看答案和解析>>

同步练习册答案