精英家教网 > 高中数学 > 题目详情
5.用数字0,1,2,3,4,5组成没有重复数字的数①能组成多少个四位数?②能组成多少个四位偶数?

分析 (1)可以先排列首位,0不能放在首位共有5种结果,后面三位只要在余下的5个数字上选3个排列.
(2)组成不同的四位偶数有两种情况,当0在个位的四位偶数有A53个,当0不在个位时,先从2,4中选一个放在个位,再从余下的四个数选一个放在首位,应有A21A41A42,相加得到结果.

解答 解:(1)可以先排列首位,0不能放在首位共有5种结果,后面三位只要在余下的5个数字上选3个排列.
共有5A53=300;
(2)组成不同的四位偶数有两种情况,
当0在个位的四位偶数有A53个,
当0不在个位时,先从2,4中选一个放在个位,再从余下的四个数选一个放在首位,应有A21A41A42
共有A53+A21A41A42=156.

点评 本题考查排列组合的实际应用,本题是一个数字问题,解题的关键是注意0不能在首位,注意分类和分步的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如果向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,那么我们称$\overrightarrow{a}$×$\overrightarrow{b}$为向量$\overrightarrow{a}$与$\overrightarrow{b}$的“向量积”,$\overrightarrow{a}$×$\overrightarrow{b}$是一个向量,它的长度|$\overrightarrow{a}$×$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|sinθ,如果|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=-2,则|$\overrightarrow{a}$×$\overrightarrow{b}$|=$4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于函数y=f(x),若存在x0∈D使得f(-x0)+f(x0)=0则称函数f(x)为“次奇函数”且x0为该函数的一个“次奇点”,给出下列命题:
①奇函数必为“次奇函数”;
②存在某个偶函数,它是“次奇函数”;
③若函数$f(x)=sin(x+\frac{π}{5})$为“次奇函数”,则该函数的所有“次奇点”为$\frac{kπ}{2}(k∈Z)$;
④若函数$f(x)=lg\frac{a+x}{1-x}$为“次奇函数”,则a=±1
⑤若函数f(x)=4x-m•2x+1为“次奇函数”,则$m≥\frac{1}{2}$.其中的正确命题是①②④⑤(写出你认为正确的所有命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域.
(1)y=x2-2x,x∈{0,1,2,3};
(2)y=x2-4x+6,x∈[1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.我们把同时满足以下两个条件的函数f(x)称为M函数:
(1)对任意的x∈[0,1],恒有f(x)≥0;
(2)当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.
①f(x)=x2②f(x)=x2+1③f(x)=lnx2④f(x)=2x-1
则以上四个函数中是M函数的有①③④(填写编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.关于x的方程x2+x+p=0(p∈R)至少存在一个根x0,若|x0|=1,则p=-2或0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|-2≤x≤3},B={x|x≥m},若A⊆B,则实数m的取值范围为(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+ax
(Ⅰ)讨论f(x)的单调性
(Ⅱ)若x>0时,f(x)<(a+2)x2都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|ax2+2x+1=0,a∈R}.
(1)若1∈A,求a的值;
(2)若集合A中只有一个元素,求实数a组成的集合;
(3)若集合A中含有两个元素,求实数a组成的集合.

查看答案和解析>>

同步练习册答案