精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数的图象恰好通过个整点,则称函数阶整点函数.有下列函数:

其中是一阶整点函数的是( )

A. ①②③④ B. ①③④ C. ①④ D. ④

【答案】C

【解析】

试题分析:对于函数fx=sin2x,它只通过一个整点(00),故它是一阶整点函数;

对于函数gx=x3,当x∈Z时,一定有gx=x3∈Z,即函数gx=x3通过无数个整点,它不是一阶整点函数;

对于函数x=0-1-2,时,hx)都是整数,故函数hx)通过无数个整点,它不是一阶整点函数;

对于函数φx=lnx,它只通过一个整点(10),故它是一阶整点函数.故答案为①④.选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在中国决胜全面建成小康社会的关键之年,如何更好地保障和改善民生,如何切实增强政策“获得感”,成为年全国两会的重要关切.某地区为改善民生调研了甲、乙、丙、丁、戊个民生项目,得到如下信息:①若该地区引进甲项目,就必须引进与之配套的乙项目;②丁、戊两个项目与民生密切相关,这两个项目至少要引进一个;③乙、丙两个项目之间有冲突,两个项目只能引进一个;④丙、丁两个项目关联度较高,要么同时引进,要么都不引进;⑤若引进项目戊,甲、丁两个项目也必须引进.则该地区应引进的项目为( )

A. 甲、乙B. 丙、丁C. 乙、丁D. 甲、丙

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:关于的不等式无解;命题:指数函数上的增函数.

(1)若命题为真命题,求实数的取值范围;

(2)若满足为假命题且为真命题的实数取值范围是集合,集合,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点且不垂直于轴直线与椭圆相交于两点。

1)求椭圆的方程;

2)若点关于轴的对称点是点,证明:直线轴相交于定点。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,点是抛物线上一点,且.

(1)求的值;

(2)过点作两条互相垂直的直线,与抛物线的另一交点分别是.

①若直线的斜率为,求的方程;

的面积为12,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为2的正方形,,且中点.

)求证:平面  

求二面角的大小

在线段上是否存在点,使得点到平

的距离为?若存在,确定点的位置;

若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当自变量x在什么范围取值时,下列函数的值等于0?大于0?小于0?

(1);

(2);

(3);

(4).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,m∈R.

(1)若m=3,求A∩B;

(2)已知命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,短轴的两个顶点与构成面积为2的正方形.

(Ⅰ)求的方程;

(Ⅱ)直线与椭圆轴的右侧交于点,以为直径的圆经过点的垂直平分线交轴于点,且,求直线的方程.

查看答案和解析>>

同步练习册答案