精英家教网 > 高中数学 > 题目详情
5.若变量x,y满足$\left\{\begin{array}{l}{x+y≤-1}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,则x2+y2的最小值是1.

分析 画出可行域,目标函数z=x2+y2是可行域中的点(0,-1)到原点的距离的平方,利用线性规划进行求解.

解答 解:变量x,y满足$\left\{\begin{array}{l}{x+y≤-1}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,如图,
作出可行域,x2+y2是点(x,y)到原点的距离的平方,
故最大值为点A(0,-1)到原点的距离的平方,
即|AO|2=1,即x2+y2的最小值是:1.
故答案为:1.

点评 此题主要考查简单的线性规划问题,是一道基础题,要学会画图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在△ABC中,若BC=$\sqrt{2}$,AC=2,B=45°,则角A等于(  )
A.60°B.30°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知焦点在x轴上的椭圆mx2+ny2=1的离心率为$\frac{1}{2}$,则$\frac{m}{n}$等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{x^2}{4}$+y2=1的焦点分别是F1,F2,点M在该椭圆上,如果$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_2}M}$=0,那么点M到y轴的距离是(  )
A.$\sqrt{2}$B.$\frac{2\sqrt{6}}{3}$C.$\frac{{3\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ex-ln(x+a)(a∈R)有唯一的零点x0,则(  )
A.-1<x0<-$\frac{1}{2}$B.-$\frac{1}{2}$<x0<-$\frac{1}{4}$C.-$\frac{1}{4}$<x0<0D.0<x0<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在公差大于1的等差数列{an}中,已知a12=64,a2+a3+a10=36,则数列{|an|}的前20项和为812.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.极坐标系下,直线l:ρsin(120°-α)=sin60°的倾斜角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线y=kx(k∈R)与函数f(x)=$\left\{\begin{array}{l}{3-(\frac{1}{4})^{x}(x≤0)}\\{\frac{1}{2}{x}^{2}+2(x>0)}\end{array}\right.$的图象恰有三个不同的公共点,则实数k的取值范围是(  )
A.($\frac{3}{2}$,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,-2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设n∈N*,一元二次方程x2-4x+n=0有实数根的充要条件是n=1或2或3或4..

查看答案和解析>>

同步练习册答案