【题目】已知椭圆:的左焦点,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)经过圆:上一动点作椭圆的两条切线,切点分别记为,,直线,分别与圆相交于异于点的,两点.
(i)求证:;
(ii)求的面积的取值范围.
【答案】(Ⅰ);(Ⅱ)(i)证明见解析;(ii).
【解析】
(Ⅰ)根据题意可知,,,再结合即可解出,得到
椭圆的标准方程;
(Ⅱ)(i)根据直线,的斜率都存在或者直线,其中一条直线斜率不存在分类讨论,当直线,的斜率都存在时,联立直线与椭圆方程,根据可得直线,的斜率的关系,结合点在圆上可得,即证出,当直线或的斜率不存在时,可确定点坐标,即可求出,两点坐标,易得;
(ii)设出点,,分类讨论直线的斜率存在时以及不存在时的情况,由直线的方程与椭圆方程联立可得,即可得到直线的斜率存在或不存在时的方程为,同理可得直线的方程为,即可得直线的方程为,再与椭圆方程联立求得弦长,由点到直线的距离公式求出点到直线的距离,从而得到的面积的表达式,再根据换元法以及函数值域的求法即可求解.
(Ⅰ)∵椭圆的左焦点,∴.
将代入,得.
又,∴,.
∴椭圆的标准方程为.
(Ⅱ)(i)设点.
①当直线,的斜率都存在时,设过点与椭圆相切的直线方程为.
由,消去,
得.
.
令,整理得.
设直线,的斜率分别为,.∴.
又,∴.
∴,即为圆的直径,∴.
②当直线或的斜率不存在时,不妨设,
则直线的方程为.
∴,,也满足.
综上,有.
(ii)设点,.
当直线的斜率存在时,设直线的方程为.
由,消去,得.
.
令,整理得.
则.
∴直线的方程为.
化简可得,即.
经验证,当直线的斜率不存在时,
直线的方程为或,也满足.
同理,可得直线的方程为.
∵在直线,上,∴,.
∴直线的方程为.
由,消去,得.
∴,.
∴
.
又点到直线的距离.
∴.
令,.则.
又,∴的面积的取值范围为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.曲线的极坐标方程为,曲线与曲线的交线为直线.
(1)求直线和曲线的直角坐标方程;
(2)直线与轴交于点,与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左焦点,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)经过圆:上一动点作椭圆的两条切线,切点分别记为,,直线,分别与圆相交于异于点的,两点.
(i)当直线,的斜率都存在时,记直线,的斜率分别为,.求证:;
(ii)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.
(1)当时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线(t为参数),曲线,(为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.
(1)求曲线,的极坐标方程;
(2)射线分别交,于A,B两点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊数学家阿波罗尼奥斯发现:平面上到两定点,距离之比为常数且的点的轨迹是一个圆心在直线上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体中,,点在棱上,,动点满足.若点在平面内运动,则点所形成的阿氏圆的半径为________;若点在长方体内部运动,为棱的中点,为的中点,则三棱锥的体积的最小值为___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com