精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+2bx+c,若f(x)=0有两个根x1、x2,且x1∈[-1,0],x2∈[1,2].
(1)求b,c满足的约束条件,并在下面的坐标平面内画出满足这些条件的点(b,c)的区域;
(2)若令g(x)=bx2+2cx,其中x∈[1,2],求证:-10≤g(x)≤-
12
分析:(1)由题意可得f(-1)≥0,f(0)≤0,f(1)≤0,f(2)≥0,列出线性约束条件,画出可行域,如图.
(II) b=0时,g(x)=-2x,由x∈[1,2],可得-4≤g(x)≤-2.当b≠0时,g(x)图象为开口向下的抛物线,g(x)在x∈[1,2]上单调递减,g(x)min =g(2)=4b+4c,g(x)max =g(1)=b+2c.根据线性规划
的知识可得,-10≤4b+4c≤-2,-
9
2
≤b+2c≤-
1
2
,从而得到结论成立.
解答:解:(1)x1∈[-1,0],x2∈[1,2].则有f(-1)≥0,f(0)≤0,f(1)≤0,f(2)≥0,故有:
2b-c-1≤0
c≤0
2b+c+1≤0
4b+c+4≥0

如图中阴影部分,即是满足这些条件的点(b,c)的区域.
(II) 由(I)知,当(b,c)=(0,-1),即b=0时,
g(x)=bx2+2cx=-2x,再由x∈[1,2],
可得-4≤g(x)≤-2.
当b≠0时,g(x)图象为开口向下的抛物线,
对称轴为 -
c
b
≤0

所以g(x)在x∈[1,2]上单调递减,g(x)min =g(2)=4b+4c,g(x)max =g(1)=b+2c.
又由(1)利用线性规划的知识可得,-10≤4b+4c≤-2,-
9
2
≤b+2c≤-
1
2

-10≤g(x)≤-
1
2
点评:本题主要考查一元二次方程的根的分布与系数的关系,线性规划的知识的应用,体现了分类讨论、数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案