精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当为何值时,轴为曲线的切线;

2)用表示中的最大值,设函数,当时,讨论零点的个数.

【答案】1;(2)见解析.

【解析】

1)设切点坐标为,然后根据可解得实数的值;

2)令,然后对实数进行分类讨论,结合的符号来确定函数的零点个数.

1

设曲线轴相切于点,则

,解得.

所以,当时,轴为曲线的切线;

2)令

,由,得.

时,,此时,函数为增函数;当时,,此时,函数为减函数.

.

①当,即当时,函数有一个零点;

②当,即当时,函数有两个零点;

③当,即当时,函数有三个零点;

④当,即当时,函数有两个零点;

⑤当,即当时,函数只有一个零点.

综上所述,当时,函数只有一个零点;

时,函数有两个零点;

时,函数有三个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

1)讨论函数的单调性;

2)当为自然对数的底数),时,若方程有两个不等实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)|2x4||x3|.

(1)解关于x的不等式f(x)<8

(2)对于正实数ab,函数g(x)f(x)3a4b只有一个零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,动直线与椭圆交于点,与轴交于点.为坐标原点,中点.

1)若,求的面积;

2)若试探究是否存在常数,使得是定值?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点EF分别为棱DCBC的中点,点G是棱SC靠近点C的四等分点.

求证:(1)直线平面EFG

2)直线平面SDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如图:

1)若景点甲中的数据的中位数是125,景点乙中的数据的平均数是124,求xy的值;

2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据.今从这段时期中任取4天,记其中游客数超过120人的天数为,求概率

3)现从如图所示的共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115且不高于125人的天数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

设函数

(Ⅰ)若是函数的极值点,1和的两个不同零点,且

,求的值;

(Ⅱ)若对任意, 都存在 为自然对数的底数),使得

成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为直角梯形,的中点.

(Ⅰ)证明:∥平面

(Ⅱ)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(mR)的导函数为

1)若函数存在极值,求m的取值范围;

2)设函数(其中e为自然对数的底数),对任意mR,若关于x的不等式(0)上恒成立,求正整数k的取值集合.

查看答案和解析>>

同步练习册答案