7£®ÔÚ¼«×ø±êϵÖУ¬ÇúÏßC1£º¦Ñ=2cos¦È£¬ÇúÏß ${C_2}£º¦Ñ{sin^2}¦È=4cos¦È$£®ÒÔ¼«µãΪ×ø±êÔ­µã£¬¼«ÖáΪxÖáÕý°ëÖὨÁ¢Ö±½Ç×ø±êϵxOy£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨¢ñ£©ÇóC1£¬C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©CÓëC1£¬C2½»ÓÚ²»Í¬Ëĵ㣬ÕâËĵãÔÚCÉϵÄÅÅÁÐ˳´ÎΪP£¬Q£¬R£¬S£¬Çó||PQ|-|RS||µÄÖµ£®

·ÖÎö £¨I£©ÇúÏßC1£º¦Ñ=2cos¦È£¬¼´¦Ñ2=2¦Ñcos¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®ÇúÏß ${C_2}£º¦Ñ{sin^2}¦È=4cos¦È$¼´¦Ñ2sin2¦È=4¦Ñcos¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç±ê×¼·½³Ì£®
£¨II£©ÉèËĵãÔÚCÉϵÄÅÅÁÐ˳´ÎΪP£¬Q£¬R£¬S£¬Æä²ÎÊý·Ö±ðΪt1£¬t2£¬t3£¬t4£®ÇúÏßCµÄ²ÎÊý·½³Ì´úÈëÅ×ÎïÏß·½³Ì¿ÉµÃ£º3t2-8t-32=0£®¡÷1£¾0£¬¿ÉµÃt1+t4£®ÇúÏßCµÄ²ÎÊý·½³Ì´úÈëÔ²µÄ·½³Ì¿ÉµÃ£ºt2+t=0£®¡÷2£¾0£¬¿ÉµÃt2+t3£®¡à||PQ|-|RS||=|£¨t2-t1£©-£¨t4-t3£©|=|£¨t2+t3£©-£¨t1+t4£©|¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÇúÏßC1£º¦Ñ=2cos¦È£¬¼´¦Ñ2=2¦Ñcos¦È£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£ºx2+y2=2x£®
ÇúÏß ${C_2}£º¦Ñ{sin^2}¦È=4cos¦È$¼´¦Ñ2sin2¦È=4¦Ñcos¦È£¬»¯ÎªÖ±½Ç±ê×¼·½³Ì£ºy2=4x£®
£¨II£©ÉèËĵãÔÚCÉϵÄÅÅÁÐ˳´ÎΪP£¬Q£¬R£¬S£¬Æä²ÎÊý·Ö±ðΪt1£¬t2£¬t3£¬t4£®
ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëÅ×ÎïÏß·½³Ì¿ÉµÃ£º3t2-8t-32=0£®¡÷1£¾0£¬¿ÉµÃt1+t4=$\frac{8}{3}$£®
ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëÔ²µÄ·½³Ì¿ÉµÃ£ºt2+t=0£®¡÷2£¾0£¬¿ÉµÃt2+t3=-1£®
¡à||PQ|-|RS||=|£¨t2-t1£©-£¨t4-t3£©|=|£¨t2+t3£©-£¨t1+t4£©|=$|1+\frac{8}{3}|$=$\frac{11}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏߵIJÎÊý·½³Ì¼°ÆäÓ¦Óá¢Ô²µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÈÎÒâ½Ç¦ÈÒÔxÖá·Ç¸º°ëÖáΪʼ±ß£¬ÈôÖձ߾­¹ýµãP£¨x0£¬y0£©£¬ÇÒ|OP|=r£¨r£¾0£©£¬¶¨Òåsicos¦È=$\frac{{x}_{0}+{y}_{0}}{r}$£¬³Æ¡°sicos¦È¡±Îª¡°ÕýÓàÏÒº¯Êý¡±£®¶ÔÓÚÕýÓàÏÒº¯Êýy=sicosx£¬ÓÐͬѧµÃµ½ÈçϽáÂÛ£º
¢Ù¸Ãº¯ÊýÊÇżº¯Êý£»
¢Ú¸Ãº¯ÊýµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ£¨$\frac{3¦Ð}{4}$£¬0£©£»
¢Û¸Ãº¯ÊýµÄµ¥µ÷µÝ¼õÇø¼äÊÇ[2k¦Ð-$\frac{3¦Ð}{4}$£¬2k¦Ð+$\frac{¦Ð}{4}$]£¬k¡ÊZ£®
¢Ü¸Ãº¯ÊýµÄͼÏóÓëÖ±Ïßy=$\frac{3}{2}$ûÓй«¹²µã£»
ÒÔÉϽáÂÛÖУ¬ËùÓÐÕýÈ·µÄÐòºÅÊǢڢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÎÒÃǰѸ÷λÊý×ÖÖ®ºÍµÈÓÚ6µÄÈýλÊý³ÆΪ¡°¼ªÏéÊý¡±£¬ÀýÈç123¾ÍÊÇÒ»¸ö¡°¼ªÏéÊý¡±£¬ÔòÕâÑùµÄ¡°¼ªÏéÊý¡±Ò»¹²ÓУ¨¡¡¡¡£©
A£®28¸öB£®21¸öC£®35¸öD£®56¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÕýËÄÀâ׶P-ABCD¸÷Àⳤ¶¼Îª2£¬µãO£¬M£¬N£¬Q·Ö±ðÊÇAC£¬PA£¬PC£¬PBµÄÖе㣮
£¨I£©ÇóÖ¤£ºPD¡ÎƽÃæQAC£»
£¨¢ò£©ÇóÈýÀâ׶P-MNDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x+y-2¡Ý0\\ x-y-2¡Ü0\\ 2x-y-2¡Ý0\end{array}\right.$£¬Ôòz=x+2yµÄ×îСֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Éèa=0.32£¬b=20.3£¬c=log25£¬d=log20.3£¬Ôòa£¬b£¬c£¬dµÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£®d£¼b£¼a£¼cB£®d£¼a£¼b£¼cC£®b£¼c£¼d£¼aD£®b£¼d£¼c£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®º¯Êýf£¨x£©=$\frac{{{ln|x}|}}{{{e^x}-{e^{-x}}}}$µÄͼÏó´óÖÂÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®É躯Êýy=2sin£¨x+$\frac{¦Ð}{6}$£©cos£¨x+$\frac{¦Ð}{6}$£©µÄͼÏó¸÷µãµÄºá×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{1}{2}$£¬ÔÙÏò×óƽÒÆ$\frac{¦Ð}{24}$¸öµ¥Î»£¬µÃµ½º¯ÊýµÄͼÏóµÄ¶Ô³ÆÖÐÐÄ¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{¦Ð}{4}$£¬0£©B£®£¨$\frac{¦Ð}{8}$£¬0£©C£®£¨$\frac{¦Ð}{2}$£¬0£©D£®£¨$\frac{5¦Ð}{24}$£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®$f£¨x£©={log_{\frac{1}{2}}}£¨3-2x-{x^2}£©$µÄÔöÇø¼äΪ£¨-1£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸