【题目】经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为X的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率.
【答案】解:(I)由题意得,当X∈[100,130)时,T=500X﹣300(130﹣X)=800X﹣39000,
当X∈[130,150]时,T=500×130=65000,
∴T= .
(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.
由直方图知需求量X∈[120,150]的频率为0.7,
所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.
【解析】(1)根据题意,分别写出当X∈[100,130)时,当X∈[130,150]时T与X的关系式,(2)由(I)知,利润T不少于57000元,当且仅当120≤X≤150,结合频率直方图,可得出下一个销售季度的利润T不少于57000元的概率的估计值为0.7.
【考点精析】根据题目的已知条件,利用频率分布直方图的相关知识可以得到问题的答案,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.
科目:高中数学 来源: 题型:
【题目】下列四种说法正确的是( )
①函数f(x)的定义域是R,则“x∈R,f(x+1)>f(x)”是“函数f(x)为增函数”的充要条件;
②命题“ ”的否定是“ ”;
③命题“若x=2,则x2﹣3x+2=0”的逆否命题是真命题;
④p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sinx在第一象限是增函数,则p∧q为真命题.
A.①②③④
B.②③
C.③④
D.③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥S﹣ABCD的底面ABCD是正方形,各侧棱长与底面的边长均相等,M为SA的中点,则直线BM与SC所成的角的余弦值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 若存在互不相同的四个实数0<a<b<c<d满足f(a)=f(b)=f(c)=f(d),则ab+c+2d的取值范围是( )
A.( , )
B.( ,15)
C.[ ,15]
D.( ,15)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x2﹣x﹣1)ex .
(1)求函数f(x)的单调区间.
(2)若方程a( +1)+ex=ex在(0,1)内有解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记函数f(x)=lg(1﹣ax2)的定义域、值域分别为集合A,B.
(1)当a=1时,求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com