精英家教网 > 高中数学 > 题目详情

【题目】已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,,点BAC上的射影为D,则三棱锥体积的最大值为( )

A.B.C.D.

【答案】D

【解析】

先画出图形(见解析),求出三棱锥的高,由题意得出三棱锥体积最大时面积最大,进而求出的面积表达式,利用函数知识求出面积最大值,从而求出三棱锥体积最大值.

如下图,由题意,

的中点为,则为三角形的外心,且为在平面上的射影,所以球心在的延长线上,设,则

所以,即,所以.

,设(),则,

,则,故

所以,则

所以的面积

,则

因为,所以当时,,即此时单调递增;当时,,此时单调递减.

所以当时,取到最大值为,即的面积最大值为

的面积最大时,三棱锥体积取得最大值为.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差不为零,且成等比数列,数列满足

1)求数列的通项公式;

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某销售公司在当地两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了两家超市往年同期各50天的该食品销售记录,得到如下数据:

销售件数

8

9

10

11

频数

20

40

20

20

以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.

(1)求的分布列;

(2)以销售食品利润的期望为决策依据,在之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,斜率为1的直线与椭圆交于两点,且,其中为坐标原点.

1)求椭圆的标准方程;

2)设过点且与直线平行的直线与椭圆交于两点,若点满足,且与椭圆的另一个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即尺),芦苇生长在水的中央,长出水面的部分为1.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设,现有下述四个结论:

①水深为12尺;②芦苇长为15尺;③;④.

其中所有正确结论的编号是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若存在极小值,求实数的取值范围;

(2)设的极小值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,离心率是椭圆的左顶点,是椭圆的左焦点,,直线.

(1)求椭圆方程;

(2)直线过点与椭圆交于两点,直线分别与直线交于两点,试问:以为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案