精英家教网 > 高中数学 > 题目详情

【题目】用数字组成没有重复数字的四位数

可组成多少个不同的四位数?

可组成多少个不同的四位偶数?

中的四位数按从小到大的顺序排成一数列,问第项是什么?

【答案】300;156;()2301

【解析】

试题分析:根据排列性质,先排最高为千位,不能排0,所以可以从1,2,3,4,5中任意取一个排在最高位,有种排法,然后排剩余的三个位置,可以从0和剩余的4个数字这5个数字中,任意取3个排在剩余的3个位置,共有种排法,根据乘法原理,完成这件事共有:种;组成4位偶数,末位只能排0或2或4,末位排0时,其他位置任意排,有种排法,末位排2或4时,最高位不能排0,此时有种,再根据加法原理,完成这件事共有+种方法;()将中的数从小到大排列,最高位为1时,有个,同理最高位为2时也有个,第85个数应该是首位为2的时候,前两个数字为20时,有个,前两个数字为21时,有个,此时共84个数,所以第85个数为2301

试题解析:

分为两类:0在末位,则有:0不在末位,则有60+96=156个

首位为1的有60个前两位为20的有12个

前两位为21的有12个

因而第85项是前两位为23的最小数,即为2301

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 为线段上一点, 的中点.

1)证明: 平面

2)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,若0≤a≤1nNn≥2,求证:f(2x)≥2f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为C的圆:(x﹣a)2+(y﹣b)2=8(a,b为正整数)过点A(0,1),且与直线y﹣3﹣2 =0相切.
(1)求圆C的方程;
(2)若过点M(4,﹣1)的直线l与圆C相交于E,F两点,且 =0.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若tan =2sinC且AB=3,则△ABC的周长的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形和菱形所在平面互相垂直,如图,其中 ,点为线段的中点.

(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值,若不存在,请说明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,A、B、C三点满足 = +
(1)求证:A、B、C三点共线;
(2)求 的值;
(3)已知A(1,cosx)、B(1+cosx,cosx),x∈[0, ],f(x)= ﹣(2m+ )| |的最小值为﹣ ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.

图中,课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组”).

(Ⅰ)在“组”中,选择人文类课程和自然科学类课程的人数各有多少?

(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组”中选择

程或课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择课程的学生中有人参加科学营活动,每人需缴纳元,选择课程的学生中有人参加该活动,每人需缴纳元.记选择课程和课程的学生自愿报名人数的情况为,参加活动的学生缴纳费用总和为元.

①当时,写出的所有可能取值;

②若选择课程的同学都参加科学营活动,求元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个抛物线型的拱桥,当水面离拱顶2 m时,水宽4 m,若水面下降1 m,求水的宽度.

查看答案和解析>>

同步练习册答案