精英家教网 > 高中数学 > 题目详情
4.在极坐标系中,已知直线l的极坐标方程为$ρsin(θ+\frac{π}{4})=1+\sqrt{2}$,圆C的圆心是$C(\sqrt{2},\frac{π}{4})$,半径为$\sqrt{2}$.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)求直线l被圆C所截得的弦长.

分析 (Ⅰ)求出圆心坐标,和圆的标准方程,即可求圆C的极坐标方程;
(Ⅱ)分别求出直线的标准方程,利用直线和圆的位置关系即可求直线l被圆C所截得的弦长.

解答 解:(Ⅰ)∵圆C的圆心是$C(\sqrt{2},\frac{π}{4})$,
∴x=ρcosθ=$\sqrt{2}×\frac{\sqrt{2}}{2}$=1,y=ρsinθ=$\sqrt{2}×\frac{\sqrt{2}}{2}$=1,
即圆心坐标为(1,1),
则圆的标准方程为(x-1)2+(y-1)2=2,x2-2x+y2-2y=0
圆C的极坐标方程为:$ρ=2\sqrt{2}cos(θ-\frac{π}{4})$;
(Ⅱ)∵直线l的极坐标方程为$ρsin(θ+\frac{π}{4})=1+\sqrt{2}$,
∴$\frac{\sqrt{2}}{2}$ρsinθ+$\frac{\sqrt{2}}{2}$ρcosθ=1+$\sqrt{2}$,
即$x+y=2+\sqrt{2}$,
圆心到直线距离为$d=\frac{{|1+1-2-\sqrt{2}|}}{{\sqrt{2}}}=1$,圆半径为$\sqrt{2}$.
故弦长为$2\sqrt{{r^2}-{d^2}}=2$.

点评 本题主要考查参数方程和极坐标方程的应用,利用极坐标和直角坐标系之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知y=f(x)与y=f(x+1)都是定义在R上的偶函数,当x∈[-1,0]时,f(x)=-2x2-4x-2,若y=f(x)与g(x)=loga(x+1)的图象至少有3个交点,则a取值范围为(  )
A.0<a<$\frac{\sqrt{3}}{3}$B.0<a<$\frac{\sqrt{6}}{6}$C.1<a<$\sqrt{3}$D.1<a<$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(-3,$\sqrt{3}$),则<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若log2a,log2b是方程x2+x-3=0的两根,则(lg$\frac{a}{b}$)2等于(  )
A.13B.13(lg2)2C.10D.10(lg2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设集合M={x|1≤x≤10,且x∈N*},A是M的子集,且A中至少含有一个x2(x∈M),则这种子集A的个数是896.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的焦点到它的渐近线的距离为(  )
A.eB.cC.aD.b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某几何体的俯视图是如图所示的边长为1的正方形,主视图与左视图是边长为1的正三角形,则其全面积是(  )
A.2B.3C.$1+\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为(  )
A.4kmB.2$\sqrt{3}$kmC.2$\sqrt{2}$kmD.($\sqrt{3}$+1)km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线x2-y2=1右支上一点P(a,b)到直线l:y=x的距离d=$\sqrt{2}$.则a+b=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$或-$\frac{1}{2}$D.2或-2

查看答案和解析>>

同步练习册答案