精英家教网 > 高中数学 > 题目详情
(本题满分13分)已知椭圆()过点,其左、右焦点分别为,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

试题分析:
解:(Ⅰ)设点的坐标分别为,则
,可得,               2分
所以,           4分
,所以椭圆的方程为.              6分
(Ⅱ)设的坐标分别为,则. 由
可得,即,                      8分
又圆的圆心为半径为,故圆的方程为
,也就是,令
可得,故圆必过定点.                  13分
点评:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

圆C的圆心在y轴上,且与两直线l1;l2均相切.
(I)求圆C的方程;
(II)过抛物线上一点M,作圆C的一条切线ME,切点为E,且的最小值为4,求此抛物线准线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线为焦点,为准线,准线与轴交点为
(1)求
(2)过点的直线与抛物线交于两点,直线与抛物线交于点.
①设三点的横坐标分别为,计算:的值;
②若直线与抛物线交于点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点到双曲线的一条渐近线的距离为,则该双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线,若过右焦点F且倾斜角为30°的直线与双曲线的右支有两个交点,则此双曲线离心率的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,设点分别是椭圆的左、右焦点,为椭圆上任意一点,且最小值为

(1)求椭圆的方程;
(2)若动直线均与椭圆相切,且,试探究在轴上是否存在定点,点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上有n个不同的点:P1,P2, ,Pn,椭圆的右焦点为F,数列{|PnF|}是公差大于的等差数列,则n的最大值是 ( )
A.198B.199
C.200D.201

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,若直线轴交于点,与椭圆交于不同的两点,且。(14分)
(1)求椭圆的方程;
(2)求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。

查看答案和解析>>

同步练习册答案