精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求的单调区间;

2)若函数处取得极大值,求实数的取值范围

【答案】(1)的单调递减区间为,单调递增区间为(2)

【解析】

1的定义域为,把代入函数解析式,求出导函数,利用导函数的零点对定义域分段,可得原函数的单调区间;
2.对a分类求解可得使fx)在x1处取得极值的a的取值范围.

解:(1的定义域为

时,

,得.

;若.

所以的单调递减区间为,单调递增区间为.

2

①当时,,令,得

,得.所以处取得极大值.

②当时,,由①可知处取得极大值.

③当时,,则无极值.

④当时,令,得;令,得.

所以处取得极大值.

⑤当时,令,得;令,得.

所以处取得极小值.

综上,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次.

(1)求取到的2个球中恰好有1个是黑球的概率;

(2)求取到的2个球中至少有1个是红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点,直线交椭圆于不同的两点,设线段的中点为

1求椭圆的方程;

2的面积为其中为坐标原点时,试问:在坐标平面上是否存在两个定点,使得当直线运动时,为定值?若存在,求出点的坐标和定值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象为不间断的曲线,定义域为,规定:

①如果对于任意都有,则称函数是凹函数.

②如果对于任意都有,则称函数是凸函数.

1)若函数()是凹函数,试写出实数的取值范围;(直接写出结果,无需证明)

2)判断函数是凹函数还是凸函数,并加以证明;

3)若对任意的,试证明存在,使.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数).

(1)当时,求函数的图象在处的切线方程;

(2)求在区间上的最小值;

(3)若存在两个不等实数,使方程成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)讨论的单调性;

(2)若,且在区间上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=logax+2),gx)=loga2x)(a0a≠1).

1)求函数fx)﹣gx)的定义域;

2)判断fx)﹣gx)的奇偶性并证明;

3)求fx)﹣gx)>0x取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】常州地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔 (单位:分钟)满足经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时的载客量为560人,记地铁载客量为.

⑴ 求的表达式,并求当发车时间间隔为6分钟时,地铁的载客量;

⑵ 若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线:

1)求证:直线过定点;

2)判断该定点与圆的位置关系;

3)当m为何值时,直线被圆C截得的弦最长.

查看答案和解析>>

同步练习册答案