精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,A,B,C所对的边分别为a,b,c,已知sinC=
(1)若a+b=5,求△ABC面积的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的长.

【答案】
(1)解:∵a+b=5,

∴ab≤( 2=

∴SABC= sinC=≤ =


(2)解:∵2sin2A+sinAsinC=sin2C,

∴2a2+ac=c2.即8+2c=c2

解得c=4.

由正弦定理得 ,即

解得sinA= .∴cosA=

由余弦定理得cosA= = .即

解得b= 或2


【解析】(1)利用基本不等式得出ab的最大值,得出面积的最大值;(2)利用正弦定理得出a,c的关系,列方程解出c,使用正弦定理解得sinA,利用余弦定理解出b.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知S2=6,an+1=4Sn+1,n∈N*
(1)求通项an
(2)设bn=an﹣n﹣4,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从的路径中,最短路径的长度为( )

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC.

(1)求证:平面ABE⊥平面BEF;
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角 ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)满足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),则ω的一个可能取值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn= ,求适合方程b1b2+b2b3+…+bnbn+1= 的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+ )(ω>0)的图象与x轴的交点的横坐标构成一个公差为 的等差数列,要得到函数g(x)=Asinωx的图象,只需将f(x)的图象(
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),设函数f(x)= +1.
(1)若x∈[0, ],f(x)= ,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c﹣ a,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥的侧面是等腰直角三角形,,且

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案