分析 (Ⅰ)先求导,根据导数和函数单调性的关系即可得到函数的单调区间,
(Ⅱ)由(Ⅰ)知,M(a)=f($\frac{1}{a}$-2a)=2a2-1-lna,继而得到2a12-1-lna1=2a22-1-lna2,通过转化得到4a1a2=$\frac{2ln\frac{{a}_{2}}{{a}_{1}}}{\frac{{a}_{2}}{{a}_{1}}-\frac{{a}_{1}}{{a}_{2}}}$,设h(t)=t-$\frac{1}{t}$-2lnt,t>1根据函数的单调性证明$\frac{2ln\frac{{a}_{2}}{{a}_{1}}}{\frac{{a}_{2}}{{a}_{1}}-\frac{{a}_{1}}{{a}_{2}}}$<1,问题即可得以证明,
(Ⅲ)由(Ⅰ)可得,g(x)=$\left\{\begin{array}{l}{(a+1)x-ln(x+2a),-2a<x<{x}_{0}}\\{ln(x+2a)-ax+x,{x}_{0}<x<-2a+\frac{1}{a}}\end{array}\right.$,分类讨论,得到g(x)在(-2a,x0)递减,g(x)在(x0,$\frac{1}{a}$-2a)递增,故x0是g(x)的极小值点.
解答 解:(Ⅰ):f′(x)=$\frac{1}{x+2a}$-a=$\frac{-a(x+2a-\frac{1}{a})}{x+2a}$,
∵x>-2a,a>0,
由f′(x)>0,得-2a<x<$\frac{1}{a}$-2a,
由f′(x)<0,得x>$\frac{1}{a}$-2a,
∴f(x)的增区间为(-2a,$\frac{1}{a}$-2a),减区间为($\frac{1}{a}$-2a,+∞),
(Ⅱ)由(Ⅰ)知,M(a)=f($\frac{1}{a}$-2a)=2a2-1-lna,
∴2a12-1-lna1=2a22-1-lna2,
∴2(a22-a12)=lna2-lna1=ln$\frac{{a}_{2}}{{a}_{1}}$,
∴2a1a2$\frac{{a}_{2}^{2}-{a}_{1}^{2}}{{a}_{1}{a}_{2}}$=ln$\frac{{a}_{2}}{{a}_{1}}$,
∴4a1a2($\frac{{a}_{2}}{{a}_{1}}$-$\frac{{a}_{1}}{{a}_{2}}$)=2ln$\frac{{a}_{2}}{{a}_{1}}$,
∴4a1a2=$\frac{2ln\frac{{a}_{2}}{{a}_{1}}}{\frac{{a}_{2}}{{a}_{1}}-\frac{{a}_{1}}{{a}_{2}}}$,
设h(t)=t-$\frac{1}{t}$-2lnt,t>1
∴h′(t)=1+$\frac{1}{{t}^{2}}$-$\frac{2}{t}$=(1-$\frac{1}{t}$)2>0,
∴h(x)在(1,+∞)单调递增,h(t)>h(1)=0,
即t-$\frac{1}{t}$>2lnt>0,
∵$\frac{{a}_{2}}{{a}_{1}}$>1,
∴$\frac{{a}_{2}}{{a}_{1}}$-$\frac{{a}_{1}}{{a}_{2}}$>2ln$\frac{{a}_{2}}{{a}_{1}}$>0,
∴$\frac{2ln\frac{{a}_{2}}{{a}_{1}}}{\frac{{a}_{2}}{{a}_{1}}-\frac{{a}_{1}}{{a}_{2}}}$<1,
∴a1a2<$\frac{1}{4}$;
(Ⅲ)由(Ⅰ)可知,f(x)在区间(-2a,$\frac{1}{a}$-2a),
又x→-2a时,f(x)→-∞,
易知f($\frac{1}{a}$-2a)=M(a)=2a2-1-lna在(2,+∞)递增,
M(a)>M(2)=7-ln2>0,
∴-2a<x0<$\frac{1}{a}$-2a,且-2a<x<x0,f(x)<0,
x0<x<$\frac{1}{a}$-2a时,f(x)>0,
∴当-2a<x<$\frac{1}{a}$-2a时,g(x)=$\left\{\begin{array}{l}{(a+1)x-ln(x+2a),-2a<x<{x}_{0}}\\{ln(x+2a)-ax+x,{x}_{0}<x<-2a+\frac{1}{a}}\end{array}\right.$,
于是-2a<x<x0时,g′(x)=(a+1)-$\frac{1}{x+2a}$<a+1-$\frac{1}{{x}_{0}+2a}$,
∴若能证明x0<$\frac{1}{a+1}$-2a,便能证明(a+1)-$\frac{1}{{x}_{0}+a}$<0,
记φ(a)=f($\frac{1}{a+1}$-2a)=2a2+$\frac{1}{a+1}$-1-ln(a+1),
∴φ(a)=4a-$\frac{1}{(a+1)^{2}}$-$\frac{1}{a+1}$,
∵a>2,
∴h′(a)>8-$\frac{1}{9}$$-\frac{1}{3}$>0,
∴φ(a)在(2,+∞)上单调递增,
∴φ(a)>φ(2)=$\frac{22}{3}$-ln3>0,
∵$\frac{1}{a+1}$-2a<$\frac{1}{a}$-2a,
∴f(x)在(-2a,$\frac{1}{a+1}$-2a)内单调递减,
∴x0∈(-2a,$\frac{1}{a+1}$-2a),
于是-2a<x<x0时,g′(x)=a+1-$\frac{1}{x+2a}$<a+1-$\frac{1}{\frac{1}{a+1}-2a+2a}$=0,
∴g(x)在(-2a,x0)递减,
当x0<x<$\frac{1}{a}$-2a时,相应的g′(x)=$\frac{1}{x+2a}$-(a-1)>$\frac{1}{(\frac{1}{a}-2a)+2a}$-(a-1)=1>0,
∴g(x)在(x0,$\frac{1}{a}$-2a)递增,
故x0是g(x)的极小值点.
点评 本题的考点是利用导数研究函数的单调性,以及函数的极值问题和最值问题,对于参数问题要注意进行分类讨论,属于难题.
科目:高中数学 来源: 题型:选择题
A. | m1=-1,m2=1 | B. | m=1 | C. | m=-1 | D. | 无解 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1或$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1 | ||
C. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1 | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 190 | B. | 180 | C. | 170 | D. | 160 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com