精英家教网 > 高中数学 > 题目详情
从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如表:
8 9 7 9 7 6 10 10 8 6
10 9 8 6 8 7 9 7 8 8
(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
分析:(1)根据所给的数据,利用平均数和标准差的计算公式,分别求解,即可得到答案;
(2)比较甲和乙的标准差的大小,根据标准差越小,其稳定性越好,即可得到答案.
解答:解:(1)根据题中所给数据,则甲的平均数为
.
x
=
1
10
(8+9+7+9+7+6+10+10+8+6)=8,
乙的平均数为
.
x
=
1
10
(10+9+8+6+8+7+9+7+8+8)=8,
甲的标准差为s=
1
10
[(8-8)2+(9-8)2+…+(6-8)2]
=
2

乙的标准差为s=
1
10
[(10-8)2+(9-8)2+…+(8-8)2]
=
30
5

故甲的平均数为8,标准差为
2
,乙的平均数为8,标准差为
30
5

(2)∵
.
x
=
.
x
,且s>s
∴乙的成绩较为稳定,
故选择乙参加射箭比赛.
点评:本题考查平均数、方差与标准差、方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、从6名学生中选4人分别从事A、B、C、D四项不同的工作,若甲、乙两人不能从事A工作,则不同的选派方案共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•烟台一模)某校从参加高三年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100].
(Ⅰ)列出样本的频率分布表;
(Ⅱ)估计成绩在85分以上学生的比例;
(Ⅲ)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[40,50)中的某一位同学,已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)某校从参加高三一模考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:
分组 频数 频率
[40,50) 2 0.04
[50,60) 3 0.06
[60,70) 14 0.28
[70,80) 15 0.30
[80,90)    
[90,100) 4 0.08
合计    
(1)请把表中的空格都填上,并估计高三学生成绩在85分以上的比例和平均分;
(2)为了帮助成绩差的同学提高成绩,学校决定成立“二帮一”小组,即从[90,100)成绩中选两名同学,共同帮助 某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源:2004-2005学年北京市顺义十中高一(下)期中后检测数学试卷2(排列组合部分)(解析版) 题型:选择题

从6名学生中选4人分别从事A、B、C、D四项不同的工作,若甲、乙两人不能从事A工作,则不同的选派方案共有( )
A.280
B.240
C.180
D.96

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省孝感市安陆一中高二(上)期末数学试卷(选修2-3)(解析版) 题型:选择题

从6名学生中选4人分别从事A、B、C、D四项不同的工作,若甲、乙两人不能从事A工作,则不同的选派方案共有( )
A.280
B.240
C.180
D.96

查看答案和解析>>

同步练习册答案