精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|f(x)=lg(x-1)+$\sqrt{2-x}$},集合B={y|y=2x+a,x≤0}.
(1)若a=$\frac{3}{2}$,求A∪B;
(2)若A∩B=∅,求实数a的取值范围.

分析 (1)化简集合A,B,再由并集的含义即可得到;
(2)运用指数函数的单调性求出集合B,由A∩B=∅,可得a 的范围.

解答 解:(1)由f(x)=lg(x-1)+$\sqrt{2-x}$可得,x-1>0且2-x≥0,
解得1<x≤2,故A={x|1<x≤2};…(2分)
若a=$\frac{3}{2}$,则y=2x+$\frac{3}{2}$,当x≤0时,0<2x≤1,$\frac{3}{2}$<2x+$\frac{3}{2}$≤$\frac{5}{2}$,
故B={y|$\frac{3}{2}$<y≤$\frac{5}{2}$};                                            …(5分)
所以A∪B={x|1<x≤$\frac{5}{2}$}.                                       …(7分)
(2)当x≤0时,0<2x≤1,a<2x+a≤a+1,故B={y|a<y≤a+1},…(9分)
因为A∩B=∅,A={x|1<x≤2},所以a≥2或a+1≤1,…(12分)
即a≥2或a≤0,
所以实数a的取值范围为a≥2或a≤0.    …(14分)

点评 本题考查集合的运算和函数的定义域和值域的求法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球,现从袋中随机取出3个球,设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E(ξ)为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.由经验得知,在学校食堂某窗口处排队等候打饭的人数及其概率如下:
排队人数012345人以上
概率0.10.160.30.30.10.04
则至多2个人排队的概率为(  )
A.0.56B.0.44C.0.26D.0.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=2sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期为$\frac{2π}{3}$,则ω=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,则sin(2α+$\frac{π}{6}$)的值为$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知函数f(x)=2x+$\frac{1}{x}$(x>0),证明函数f(x)在(0,$\frac{\sqrt{2}}{2}$)上单调递减,并写出函数f(x)的单调递增区间;
(2)记函数g(x)=a|x|+2ax(a>1)
①若a=4,解关于x的方程g(x)=3;
②若x∈[-1,+∞),求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.偶函数f(x)满足f(x-1)=f(x+1),且当x∈[-1,0]时,f(x)=-x,则函数g(x)=f(x)-lgx在x∈(0,10)上的零点个数是(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式|2x-1|+|2x+9|>10的解集为$\{x|x<-\frac{9}{2}或x>\frac{1}{2}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)为奇函数,当x>0,f(x)=x(1+x),那么x<0,f(x)等于(  )
A.-x(1-x)B.x(1-x)C.-x(1+x)D.x(1+x)

查看答案和解析>>

同步练习册答案