精英家教网 > 高中数学 > 题目详情

【题目】如图是函数一个周期内的图象,将图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把所得图象向右平移个单位长度,得到函数的图象.

1)求函数的解析式;

2)若,求的所有可能的值;

3)求函数为正常数)在区间内的所有零点之和.

【答案】1;(21;(3)当时,;当时,;当时,171.

【解析】

1)由三角函数图象求得,再由三角函数图象的平移可得

2)由,解得,再求解即可;

3)先解得,再讨论1的大小关系,再解三角方程,结合正弦函数图象的对称性求各零点之和即可.

解:(1)由图可知,,,即

,又,又,所以

的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得函数解析式为,再把所得图象向右平移个单位长度,得到函数的图象,则

2)当,即,解得,

时,所以

时,

时,

的所有可能的值为1

3)令,即,即

解得,又因为,又,所以

时,由函数的对称轴方程可得()有两个解,且两解之和,

则在的根之和为

,即时,方程无解,

,即时,方程的解为 (),则在的根之和为

,即时,方程()有两个解,且两解之和,

则在的根之和为

综上可得:当时,函数在区间内的所有零点之和为.

时,函数在区间内的所有零点之和为.

时,函数在区间内的所有零点之和为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正项数列满足:,则称此数列为“比差等数列”.

1)试写出一个“比差等数列”的前项;

2)设数列是一个“比差等数列”,问是否存在最小值,如存在,求出最小值;如不存在,请说明理由;

3)已知数列是一个“比差等数列”,为其前项的和,试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,五边形中,分别是线段的中点,且,现沿翻折,使得,得到的图形如图(2)所示.

图(1) 图(2)

(1)证明:平面

(2)若平面与平面所成角的平面角的余弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,已知 .

(1)求角

(2)若点满足,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数使得,那么称的生成函数.

1)若,则是否分别为的生成函数?并说明理由;

2)设,生成函数,若不等式上有解,求实数的取值范围;

3)设,生成函数图象的最低点坐标为,若对于任意正实数,试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数满足关系,其中是常数.

1)设,求的解析式;

2)是否存在函数及常数)使得恒成立?若存在,请你设计出函数及常数;不存在,请说明理由;

3)已知时,总有成立,设函数)且,对任意,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是由正整数构成的数表,用aij表示i行第j个数(ijN).此表中ailaiii,每行中除首尾两数外,其他各数分别等于其肩膀上的两数之和.

(1)写出数表的第六行(从左至右依次列出).

(2)设第n行的第二个数为bnn≥2),bn

(3)令,记Tn为数列n项和,求的最大值,并求此时n的值.

查看答案和解析>>

同步练习册答案