精英家教网 > 高中数学 > 题目详情
10.若集合A={(m,n)|(m+1)+(m+2)+…+(m+n)=102015,m∈N,n∈N*},则集合A中的元素个数是(  )
A.2016B.2017C.2018D.2019

分析 由等差数列的前n和公式得出(m+1)+(m+2)+…+(m+n)的和,问题转化为n(2m+n+1)=2×102015=22016•52015,讨论n与(n+2m+1)的可能取值多少种情况,从而求出集合A中的元素有多少.

解答 解:由(m+1)+(m+2)+…+(m+n)=$\frac{[(m+1)+(m+n)]•n}{2}$知,
n(2m+n+1)=2×102015=22016•52015
又因为n,(n+2m+1)一奇一偶,
所以n是偶数时,n的取值为
22016,22016×5,22016×52,…,22016×52015,共有2016个,
n是奇数时,m是偶数,同理得:
22016,22016×5,22016×52,…,22016×52015,共有2016个,
所以,集合A中共有2016个元素.
故选:A.

点评 本题考查了集合的概念与应用问题,也考查了等差数列求和与整数奇偶性的应用问题,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知偶函数f(x)对任意x∈R都有f(x)=f(x-4),且f(x)在区间[-2,0]上有f(x)=$\left\{\begin{array}{l}{-{x}^{2}+\frac{3}{2}x+5,-1≤x≤0}\\{{2}^{-x}+{2}^{x},-2≤x<-1}\end{array}\right.$,若方程f(x)=($\frac{1}{2}$)|x|+b恰好有4个不等的实数根,则实数b的取值范围是(  )
A.(0,2)B.(2,$\frac{33}{8}$)C.(2,$\frac{19}{8}$)D.($\frac{19}{8}$,$\frac{33}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别为a,b,c,已知$a{cos^2}\frac{B}{2}+b{cos^2}\frac{A}{2}=\frac{3}{2}c,a=2b$.
(1)证明:△ABC为钝角三角形;
(2)若△ABC的面积为$3\sqrt{15}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设三个各项均为正整数的无穷数列{an},{bn},{cn}.记数列{bn},{cn}的前n项和分别为Sn,Tn,若对任意的n∈N*,都有an=bn+cn,且Sn>Tn,则称数列{an}为可拆分数列.
(1)若${a_n}={4^n}$,且数列{bn},{cn}均是公比不为1的等比数列,求证:数列{an}为可拆分数列;
(2)若an=5n,且数列{bn},{cn}均是公差不为0的等差数列,求所有满足条件的数列{bn},{cn}的通项公式;
(3)若数列{an},{bn},{cn}均是公比不为1的等比数列,且a1≥3,求证:数列{an}为可拆分数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?(  )
A.18B.20C.21D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.以下四个命题中,正确的个数是(  )
①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)是周期函数,则f(x)不是三角函数”;
②命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x<0”;
③在△ABC中,“sinA>sinB”是“A>B”成立的充要条件;
④命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“?p是真”是“p∨q为假”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与双曲线C2:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1有相同的渐近线,且C1的右焦点为F($\sqrt{5}$,0),则双曲线C1的方程为${x^2}-\frac{y^2}{4}=1$.

查看答案和解析>>

同步练习册答案