5£®ÈôÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$$+\overrightarrow{b}$|=$\sqrt{2}$£¬|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{6}$£¬Ôò$\overrightarrow{a}$£¬$\overrightarrow{b}$¼Ð½ÇµÄ×îСֵΪ$\frac{2¦Ð}{3}$£®

·ÖÎö °ÑÒÑÖªµÄÁ½¸öµÈʽÁ½±ßƽ·½£¬¿ÉµÃ$|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}=4$£¬a•b=-1£¬ÀûÓûù±¾²»µÈʽµÃµ½|$\overrightarrow{a}$||$\overrightarrow{b}$|¡Ü2£¬´úÈëÊýÁ¿»ýÇó¼Ð½Ç¹«Ê½¿ÉµÃ´ð°¸£®

½â´ð ½â£ºÓÉ|$\overrightarrow{a}$$+\overrightarrow{b}$|=$\sqrt{2}$£¬Á½±ßƽ·½¿ÉµÃ£º$|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}+2\overrightarrow{a}•\overrightarrow{b}=2$  ¢Ù£¬
ÓÉ|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{6}$£¬Á½±ßƽ·½¿ÉµÃ£º$|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}-2\overrightarrow{a}•\overrightarrow{b}=6$  ¢Ú£¬
ÓÉ¢Ù¢Ú½âµÃ£º$|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}=4$£¬$\overrightarrow{a}$$\overrightarrow{b}$=-1£®
¡ß$|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}$¡Ý2|$\overrightarrow{a}$||$\overrightarrow{b}$|£¬
¡à|$\overrightarrow{a}$||$\overrightarrow{b}$|¡Ü2£®
Éè$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇΪ¦Á£¬Ôòcos¦Á=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=-$\frac{1}{|\overrightarrow{a}||\overrightarrow{b}|}$¡Ü$-\frac{1}{2}$£¬
¡à¦Á¡Ý$\frac{2¦Ð}{3}$£¬¼´$\overrightarrow{a}$£¬$\overrightarrow{b}$¼Ð½ÇµÄ×îСֵΪ$\frac{2¦Ð}{3}$£®
¹Ê´ð°¸Îª£º$\frac{2¦Ð}{3}$£®

µãÆÀ ±¾Ì⿼²éÀûÓÃÊýÁ¿»ý±íʾÁ½¸öÏòÁ¿µÄ¼Ð½Ç£¬¿¼²éÁËÀûÓûù±¾²»µÈʽÇó×îÖµ£¬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈôÊýÁÐa1£¬$\frac{{a}_{2}}{{a}_{1}}$£¬$\frac{a_3}{a_2}$£¬¡­£¬$\frac{a_n}{{{a_{n-1}}}}$ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ$-\sqrt{2}$µÄµÈ±ÈÊýÁУ¬Ôòa4µÈÓÚ£¨¡¡¡¡£©
A£®-8B£®$-2\sqrt{2}$C£®$2\sqrt{2}$D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª$\overrightarrow{a}$=£¨2£¬1£©£¬|$\overrightarrow{b}$|=$\frac{\sqrt{5}}{2}$£®
£¨1£©Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Çó$\overrightarrow{b}$µÄ×ø±ê£»
£¨2£©Èô$\overrightarrow{a}$+$\overrightarrow{b}$Óë2$\overrightarrow{a}$-5$\overrightarrow{b}$´¹Ö±£¬Çó$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½Ç¦ÈµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®²»µÈʽ×é$\left\{\begin{array}{l}{\sqrt{£¨1-x£©^{2}}=x-1}\\{2{x}^{2}-x-3£¼0}\end{array}\right.$µÄ½â¼¯ÊÇ{x|1$¡Üx£¼\frac{3}{2}$}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+4£¬x¡Ü0}\\{log_2x£¬x£¾0}\end{array}\right.$Ôò²»µÈʽf£¨x£©¡Ü2µÄ½â¼¯Îª{x|x¡Ü4}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=mx2-mx-1£®
£¨1£©Èô¶ÔÓÚx¡ÊR£¬f£¨x£©£¼0ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨2£©Èô¶ÔÓÚx¡Ê[1£¬3]£¬f£¨x£©£¼5-mºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
±äʽ1£º½«£¨1£©±äΪ£ºÈô²»µÈʽmx2-mx-1£¼0¶Ôm¡Ê[1£¬2]ºã³ÉÁ¢£¬ÇóʵÊýxµÄÈ¡Öµ·¶Î§£®
±äʽ2£º½«£¨2£©ÖÐÌõ¼þ¡°f£¨x£©£¼5-mºã³ÉÁ¢¡±¸ÄΪ¡°f£¨x£©£¼5-mÎ޽⡱£¬ÈçºÎÇómµÄÈ¡Öµ·¶Î§£®
±äʽ3£º½«£¨2£©Ìõ¼þ¡°f£¨x£©£¼5-mºã³ÉÁ¢¡±¸ÄΪ¡°´æÔÚx£¬Ê¹f£¨x£©£¼5-m³ÉÁ¢¡±£¬ÈçºÎÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÇóÏÂÁÐË«ÇúÏߵĽ¹µã×ø±êºÍ½¹¾à£º
£¨1£©$\frac{{x}^{2}}{7}-\frac{{y}^{2}}{9}=1$£»
£¨2£©$\frac{{y}^{2}}{25}-\frac{{x}^{2}}{4}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=ln$\frac{kx-1}{x-1}$£¨k£¾0£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[10£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬Çó ʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªf£¨x£©=¦Ðx£¬x1•x2£¾0£¬ÊÔÇó$\sqrt{f£¨{x}_{1}£©•f£¨{x}_{2}£©}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸