精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的定义域是D,若存在常数m、M,使得m≤f(x)≤M对任意x∈D成立,则称函数f(x)是D上的有界函数,其中m称为函数f(x)的下界,M称为函数f(x)的上界;特别地,若“=”成立,则m称为函数f(x)的下确界,M称为函数f(x)的上确界. (Ⅰ)判断 是否是有界函数?说明理由;
(Ⅱ)若函数f(x)=1+a2x+4x(x∈(﹣∞,0))是以﹣3为下界、3为上界的有界函数,求实数a的取值范围;
(Ⅲ)若函数 ,T(a)是f(x)的上确界,求T(a)的取值范围.

【答案】解:(Ⅰ)f(x)= = , ∵x≥0,∴ + ≥1,
∴0<f(x)≤1,函数f(x)是有界函数,
令t=3x , 则t>0,
∴y=t2﹣3t≥﹣1即g(x)∈[﹣1,+∞),
∴g(x)不是有界函数;
(Ⅱ)∵函数f(x)=1+a2x+4x , (x∈(﹣∞,0))是以﹣3为下界,3为上界的有界函数,
∴﹣3≤1+a2x+4x≤3在(﹣∞,0)上恒成立,
即﹣2x ≤a≤ ﹣2x在(﹣∞,0)上恒成立,
令t=2x , g(t)=﹣t﹣ ,h(t)=﹣t+
∵x<0,∴0<t<1,
设t1 , t2∈(0,1),且t1<t2
则g(t1)﹣g(t2)= <0,
∴g(t)在(0,1)递增,
故g(t)<g(1)=﹣5,∴a≥﹣5,h(t1)﹣h(t2)>0,
∴h(t)在(0,1)上是减函数,
故h(t)>h(1)=1,
∴a≤1,
综上,实数a的范围是[﹣5,1];
(Ⅲ)由y= ,得:a2x=
∵x∈[0,1],a>0,
∴a≤a2x≤2a,
即a≤ ≤2a,
≤y≤
故T(a)= =﹣1+
∵a>0,
∴T(a)的范围是(﹣1,1)
【解析】(Ⅰ)根据有界函数的定义分别求出f(x),g(x)的范围,从而判断是否有界即可;(Ⅱ)问题转化为﹣2x ≤a≤ ﹣2x在(﹣∞,0)上恒成立,令t=2x , g(t)=﹣t﹣ ,h(t)=﹣t+ ,根据函数的单调性求出t的范围即可;(Ⅲ)求出a≤ ≤2a,根据 ≤y≤ ,得到T(a)= ,从而求出T(a)的范围即可.
【考点精析】利用函数的最值及其几何意义对题目进行判断即可得到答案,需要熟知利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量,函数的最大值为.

(1)求的大小;

(2)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图象,作出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若 且a2=bc,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设离心率为 的椭圆 的左、右焦点为 , PE上一点, , 内切圆的半径为 .

(1)E的方程;

(2)矩形ABCD的两顶点CD在直线AB在椭圆E,若矩形ABCD的周长为 , 求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两定点 ,曲线上的动点满足,直线与曲线的另一个交点为

)求曲线的标准方程;

)设点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x3+bx2+cx,其导函数y=f′(x)的图象(如图所示)经过点(1,0),(2,0). (Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)﹣m=0恰有2个根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设Ox、Oy是平面内相交成45°角的两条数轴, 分别是x轴、y轴正方向同向的单位向量,若向量 =x +y ,则把有序数对(x,y)叫做向量 在坐标系xOy中的坐标,在此坐标系下,假设 =(﹣2,2 ), =(2,0), =(5,﹣3 ),则下列命题不正确的是(
A. =(1,0)
B.| |=2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,以A为圆心,AD为半径的圆交ACABME.CE的延长线交⊙AFCM=2,AB=4.

(1)求⊙A的半径;

(2)求CE的长和△AFC的面积

查看答案和解析>>

同步练习册答案