精英家教网 > 高中数学 > 题目详情

(本题满分14分) 已知正四棱锥PABCD中,底面是边长为2 的正方形,高为M为线段PC的中点.
(Ⅰ) 求证:PA∥平面MDB
(Ⅱ) NAP的中点,求CN与平面MBD所成角的正切值.


(Ⅰ)

证明:在四棱锥PABCD中,连结ACBD于点O,连结OMPO.由条件可得POAC=2PAPC=2,COAO
因为在△PAC中,MPC的中点,OAC的中点,
所以OM为△PAC的中位线,得OMAP
又因为AP平面MDBOM平面MDB
所以PA∥平面MDB. …………6分
(Ⅱ) 解:设NCMOE,由题意得BPBC=2,且∠CPN=90°.
因为MPC的中点,所以PCBM
同理PCDM,故PC⊥平面BMD
所以直线CN在平面BMD内的射影为直线OM,∠MEC为直线CN与平面BMD所成的角,
又因为OMPA,所以∠PNC=∠MEC
在Rt△CPN中,CP=2,NP=1,所以tan∠PNC
故直线CN与平面BMD所成角的正切值为2.       

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在三棱锥中,面是正三角形,
(Ⅰ)求证:
(Ⅱ)求平面DAB与平面ABC的夹角的余弦值;
(Ⅲ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-中,,D,E分别为BC,的中点,的中点,四边形是边长为6的正方形.

(1)求证:平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中点,N是BC1的中点.

(1)求证:MN//平面A1B1C1
(2)求二面角B-C1M-C的平面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且.
(Ⅰ)求证:平面
(Ⅱ)设的中点为,求证:平面
(Ⅲ)设平面将几何体分割成的两个锥体的体积分别为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,分别为的中点。
(1)求证:平面
(2)若平面平面,且,求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。
(Ⅰ)求证:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是(  )

A.(,-1,-1) B.(6,-2,-2)
C.(4,2,2) D.(-1,1,4)

查看答案和解析>>

同步练习册答案