精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中.

1)试讨论的单调区间,

2)若时,存在x使得不等式成立,求b的取值范围.

【答案】1)答案不唯一,具体见解析;(2.

【解析】

1)求出函数的定义域以及导函数,讨论的取值,,求出单调递增区间,,求出单调递减区间即可.

2)由(1)知当时,的单调增区间为,减区间为,从而可得恒成立,令=,利用导数求出,只需即可.

解:(1)由已知得函数的定义域为

=.

时,在定义域内恒成立,的单调增区间为.

时,由

时,.

时,.

的单调增区间为,减区间为.

2)由(1)知当时,的单调增区间为,减区间为.

所以

所以恒成立,当时取等号.

=,则

时,;当时,

从而上单调递增,在上单调递减

所以,

所以,存在使得不等式成立

只需

即:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A,B的坐标分别为(-2,0),(2,0).三角形ABM的两条边AM,BM所在直线的斜率之积是-

(Ⅰ)求点M的轨迹方程;

(Ⅱ)设直线AM方程为,直线l方程为x=2,直线AM交l于P,点P,Q关于x轴对称,直线MQ与x轴相交于点D.若△APD面积为2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展新型冠状病毒防疫安全公益课在线学习,在此之后组织了新型冠状病毒防疫安全知识竞赛在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1234名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用abcd表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记X|a1|+|b2|+|c3|+|d4|

1)求该业主获得礼品的概率;

2)求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某公司20181月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是(

A. 20183月的销售任务是400

B. 2018年月销售任务的平均值不超过600

C. 2018年第一季度总销售量为830

D. 2018年月销售量最大的是6月份

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+lnx.

(1)求函数f(x)的单调区间;

(2)求证:当x>1时, x2+lnx<x3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体 ABCD 中,P,Q分别是棱 AB,CD的中点,E,F分别是直线AB,CD上的动点,M 是EF 的中点,则能使点 M 的轨迹是圆的条件是( )

A. PE+QF=2B. PEQF=2

C. PE=2QFD. PE2+QF2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:

①若为真命题,则均为真命题;

②命题“若,则”的逆否命题是“若,则”;

③若命题,则

④“”是“”的充分不必要条件.其中正确的结论有____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[4050),[5060),[6070),[90100]分成6组,制成如图所示频率分布直方图.

1)求图中x的值;

2)求这组数据的中位数;

3)现从被调查的问卷满意度评分值在[6080)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且

(1)证明:平面

(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案