【题目】设函数, .
(Ⅰ)求函数的单调区间;
(Ⅱ)记过函数两个极值点的直线的斜率为,问函数是否存在零点,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 底面,底面是直角梯形, , , , 是的中点.
(1)求证:平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若任意,不等式恒成立,求实数的取值范围;
(2)求证:对任意, ,都有成立;
(3)对于给定的正数,有一个最大的正数,使得整个区间上,不等式恒成立,求出的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形是正四棱柱的一个截面,此截面与棱交于点 , ,其中分别为棱上一点.
(1)证明:平面平面;
(2)为线段上一点,若四面体与四棱锥的体积相等,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直线关于直线对称的直线为,直线与椭圆分别交于点、和、,记直线的斜率为.
(Ⅰ)求的值;
(Ⅱ)当变化时,试问直线是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD中,
(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF.
(2)当BE=BF=BC时,求三棱锥A′﹣EFD体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四组中,f(x)与g(x)表示同一函数的是( )
A.f(x)=x,
B.f(x)=x,
C.f(x)=x2 ,
D.f(x)=|x|,g(x)=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com