精英家教网 > 高中数学 > 题目详情
已知偶函数f(x)在区间[0,+∞)单调递减,则满足f(x+1)<f(3)的x取值范围是
(-∞,-4)∪(2,+∞)
(-∞,-4)∪(2,+∞)
分析:由偶函数的性质和单调性以及f(x+1)<f(3)可得|x+1|>|3|,根据绝对值不等式的解法,解不等式可求范围.
解答:解:∵偶函数f(x)在区间[0,+∞)上单调递减,
由偶函数的对称区间上单调性相反可知f(x)在(-∞,0]上单调递增
∵f(x+1)<f(3)
∴|x+1|>|3|=3,即x+1>3或x+1<-3,解得x<-4或x>2,
故答案为:(-∞,-4)∪(2,+∞).
点评:本题考查了函数的奇偶性和单调性综合应用,即偶函数对称区间上单调性性质的应用,解答本题的关键是:将已知不等式转化为|x+1|>|3|.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,π]上单调递增,那么下列关系成立的是(  )
A、f(-π)>f(-2)>f(
π
2
)
B、f(-π)>f(-
π
2
)>f(-2)
C、f(-2)>f(-
π
2
)>f(-π)
D、f(-
π
2
)>f(-2)>f(π)

查看答案和解析>>

科目:高中数学 来源: 题型:

3、已知偶函数f(x)在(0,+∞)上单调递增,则f(-3),f(-1),f(2)的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在R上的任一取值都有导数,且f′(1)=1,f(x+2)=f(x-2),则曲线y=f(x)在x=-5处的切线的斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)上满足f′(x)>0则不等式f(2x-1)<f(
1
3
)的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(2x-1)<f(x+3)的x的取值范围是
x>2或x<-
4
3
x>2或x<-
4
3

查看答案和解析>>

同步练习册答案