精英家教网 > 高中数学 > 题目详情
(2009•荆州模拟)数列{xn}满足x1=
1
3
,且n≥2时,xn=
xn-1
2-xn-1
,若对任意n∈N*,都有|x2-x1|+|x3-x2|+…+|xn+1-xn|<a成立,则实数a的取值范围是
[
1
3
,+∞)
[
1
3
,+∞)
分析:当n≥2时,xn=
xn-1
2-xn-1
,两边取倒数得
1
xn
=
2
xn-1
-1
,变形为
1
xn
-1=2(
1
xn-1
-1)
,利用等比数列的通项公式即可得出xn.由对任意n∈N*
都有|x2-x1|+|x3-x2|+…+|xn+1-xn|<a成立,?(|x2-x1|+|x3-x2|+…+|xn+1-xn|)max<a成立,通过去掉绝对值符号即可得出.
解答:解:当n≥2时,xn=
xn-1
2-xn-1
,两边取倒数得
1
xn
=
2
xn-1
-1
,变形为
1
xn
-1=2(
1
xn-1
-1)

∴数列{
1
xn
-1
}是以
1
x1
-1=
1
1
3
-1=3-1=2
为首项,2为公比的等比数列.
1
xn
-1
=2n,解得xn=
1
2n+1
.可得xn>xn+1
由对任意n∈N*,都有|x2-x1|+|x3-x2|+…+|xn+1-xn|<a成立,?(|x2-x1|+|x3-x2|+…+|xn+1-xn|)max<a成立,
而|x2-x1|+|x3-x2|+…+|xn+1-xn|=(x1-x2)+(x2-x3)+…+(xn-xn+1)=x1-xn+1=
1
3
-
1
2n+1+1
1
3

a≥
1
3

故实数a的取值范围是[
1
3
,+∞)

故答案为[
1
3
,+∞)
点评:本题综合考查了通过“取倒数法”把数列转化为等比数列解决、含绝对值符号的恒成立问题转化为求其最值问题等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•荆州模拟)已知a∈R,若关于x的方程x2+x+|a-
1
4
|+|a|=0
有实根,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•荆州模拟)已知函数f(x)=x3+ax2+bx+c的图象经过原点,且在x=1处取得极值,直线y=2x+3到曲线y=f(x)在原点处的切线所成的角为45°.
(1)求f(x)的解析式;
(2)若对于任意实数α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•荆州模拟)函数f(x)=log2(x2+1)(x<0)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•荆州模拟)某种测试可以随时在网络上报名参加,某人通过这种测试的概率是
2
3
,若他连续两次参加,则其中恰有一次通过的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•荆州模拟)已知cos(θ+
π
6
)=
5
13
0<θ<
π
3
,则cosθ=(  )

查看答案和解析>>

同步练习册答案