精英家教网 > 高中数学 > 题目详情

【题目】如图,在P地正西方向8kmA处和正东方向1kmB处各有一条正北方向的公路ACBD,现计划在ACBD路边各修建一个物流中心EF,为缓解交通压力,决定修建两条互相垂直的公路PEPF,设

为减少对周边区域的影响,试确定EF的位置,使的面积之和最小;

为节省建设成本,求使的值最小时AEBF的值.

【答案】(1) km,km时,的面积之和最小.

(2) ,且时,的值最小.

【解析】

试题分析:(1)用角表示,从而表示三角形的面积,求出面积之和用基本不等式求最小值,求出等号成立时的,即可确定的位置;

2) 用角表示,构建函数,用导数与最值的关系求之即可.

试题解析:(1)在Rt△PAE中,由题意可知AP=8,则

所以2

同理在Rt△PBF中,PB1,则

所以4

△PAE△PFB的面积之和为5

=8

当且仅当,即时,取

故当kmkm时,的面积之和最小. 6

2)在Rt△PAE中,由题意可知,则

同理在Rt△PBF中,,则

8

10

,得,记

时,单调减;

时,单调增.

所以时,取得最小值, 12

此时

所以当km,且km时,PE+PF的值最小. 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点的距离,等于它到直线的距离.

(1)求点的轨迹的方程;

2)过点任意作互相垂直的两条直线,分别交曲线于点

设线段的中点分别为,求证:直线恒过一个定点;

3)在(2)的条件下,求面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分,()小问6分,()小问6分)一家公司计划生产某种小型产品的月固定成本为万元,每生产万件需要再投入万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元. 为自然对数的底数,是一个常数.

)写出月利润(万元)关于月产量(万件)的函数解析式;

)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数.

(1)时,求的最小值

(2)若存在实数,使得对任意实数都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线有公共的焦点,且公共弦长为

1)求的值.

2)过的直线两点,交两点,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)且函数是奇函数.

(1)求的值;

(2)是否存在这样的实数,使对所有的均成立?若存在,求出适合条件的实数的值或范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC—A1B1C1中,CA=CB=4,,E,F分别为AC,CC1的中点,则直线EF与平面AA1B1B所成的角是

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在正数xy,使得,其中e为自然对数的底数,则实数的取值范围是_____________

查看答案和解析>>

同步练习册答案