分析 (1)要证AD1⊥平面A1B1D,只需证明A1B1⊥AD1,AD1⊥A1D即可.
(2)要证B1E⊥AD1,只需证明AD1⊥面A1B1CD即可说明结果.
(3)点P是棱AA1的中点,使得DP∥平面B1AE,通过在AB1上取中点M,连接PM1ME.证明PM∥A1B1,且PM=$\frac{1}{2}$A1B1,然后说明四边形PMED是平行四边形,然后证明DP∥平面B1AE.
解答 证明:(1)在长方体ABCD-A1B1C1D1中,
因为A1B1⊥面A1D1DA,
所以A1B1⊥AD1. …(2分)
在矩形A1D1DA中,因为AA1=AD=2,
所以AD1⊥A1D.…(4分)
所以AD1⊥面A1B1D.…(5分)
(2)因为E∈CD,所以B1E?面A1B1CD,
由(1)可知,AD1⊥面A1B1CD,…(7分)
所以B1E⊥AD1. …(8分)
(3)当点P是棱AA1的中点时,有DP∥平面B1AE.
…(9分)
理由如下:
在AB1上取中点M,连接PM1ME.
因为P是棱AA1的中点,M是AB1的中点,
所以PM∥A1B1,且PM=$\frac{1}{2}$A1B1.…(10分)
又DE∥A1B1,且DE=$\frac{1}{2}$A1B1.
所以PM∥DE,且M=DE,
所以四边形PMED是平行四边形,
所以DP∥ME.…(11分)
又DP?面B1AE,ME?面B1AE,
所以DP∥平面B1AE.此时,AP=$\frac{1}{2}$A1A=2. …(13分)
点评 本题考查线面垂直、线线垂直的证明,考查满足线面平行的点的位置的确定与求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | |f(x)|g(x)是奇函数 | B. | f(x)g(x)是偶函数 | C. | f(x)|g(x)|是奇函数 | D. | |f(x)g(x)|是奇函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
组 数 | 分 组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | p |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | a | 0.4 |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55] | 15 | 0.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1006 | B. | 1007 | C. | 1008 | D. | 1009 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com