精英家教网 > 高中数学 > 题目详情
3.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,一个焦点到相应的准线的距离为3,圆N的方程为(x-c)2+y2=a2+c2(c为半焦距),直线l:y=kx+m(k>0)与椭圆M和圆N均只有一个公共点,分别为A,B.
(1)求椭圆方程和直线方程;
(2)试在圆N上求一点P,使$\frac{PB}{PA}$=2$\sqrt{2}$.

分析 (1)先根据题意通过离心率和焦点到准线的距离联立方程求得a和c,则b可得,进而求得椭圆的方程.利用直线l:y=kx+m(k>0)与椭圆M和圆N均只有一个公共点,可得直线方程;
(2)由(1),可得A(-1,1.5),B(0,2),利用$\frac{PB}{PA}$=2$\sqrt{2}$,求出P的轨迹方程,与圆N联立,可得P的坐标.

解答 解:(1)由题意有$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{{a}^{2}}{c}-c=3}\end{array}\right.$,解得a=2,c=1,
从而b=$\sqrt{3}$,
∴椭圆的标准方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
圆N的方程为(x-1)2+y2=5,圆心到直线的距离d=$\frac{|k+m|}{\sqrt{{k}^{2}+1}}$=$\sqrt{5}$①
直线l:y=kx+m代入$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,整理可得(3+4k2)x2+8kmx+4m2-12=0,
∴△=0,可得m2=3+4k2,②
由①②,k>0,可得m=2,k=$\frac{1}{2}$,
∴直线方程为y=$\frac{1}{2}x+2$;
(2)由(1),可得A(-1,1.5),B(0,2),
设P(x,y),则x2+(y-2)2=8(x+1)2+8(y-1.5)2,∴7x2+7y2+16x-20y+22=0
与(x-1)2+y2=5联立,可得x=-1,y=1或x=-$\frac{9}{13}$,y=$\frac{19}{13}$,
∴P(-1,1)或(-$\frac{9}{13}$,y=$\frac{19}{13}$).

点评 本题主要考查了直线与椭圆方程.考查直线与圆锥曲线的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.过点(0,2)且与两坐标轴相切的圆的标准方程为(x-2)2+(y-2)2=4或(x+2)2+(y-2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,点$A(1,\frac{{\sqrt{3}}}{2})$在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与l相交两点P1,P2(两点均不在坐标轴上),且使得直线OP1,OP2的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.直线3x+4y+4=0与圆C:x2+y2-2x-4y+a=0有两交点A,B.
(1)写出圆C的标准方程;
(2)若△ABC是正三角形,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知对称轴为坐标轴的双曲线的渐进线方程为y=±$\frac{b}{a}$x(a>0,b>0),若双曲线上有一点M(x0,y0),使b|x0|<a|y0|,则该双曲线的焦点(  )
A.在x轴上B.在y轴上C.当a>b时,在x轴上D.当a>b时,在y轴上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{-x},x≤0}\\{lo{g}_{5}x,x>0}\end{array}\right.$,函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数F(x)=f(x)-g(x)的零点个数为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四棱柱ABCD-A1B1C1D1的侧棱AA1⊥底面ABCD,ABCD是等腰梯形,AB∥DC,AB=2,AD=1,∠ABC=60°,E,F分别是A1C,A1B1的中点.
(Ⅰ)求证:D1E∥平面BB1C1C;
(Ⅱ)求证:BC⊥A1C;
(Ⅲ)若A1A=AB,求DF与平面A1ADD1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,且满足$\frac{acosB+bcosA}{c}$=2cosC.
(1)求角C的大小;
(2)若△ABC的面积为2$\sqrt{3}$,a+b=6,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知两点M(0,2),N(-3,6)到直线l的距离分别为1和3,则满足条件的直线l的条数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案