精英家教网 > 高中数学 > 题目详情
18.已知曲线C1:ρ=2cosθ,圆${C_2}:{ρ^2}-2\sqrt{3}ρsinθ+2=0$,把两条曲线化成直角坐标方程,并判断这两条曲线的位置关系.

分析 利用互化公式可得直角坐标方程,求出圆心之间的距离与半径和差比较即可得出位置关系.

解答 解:曲线C1:ρ=2cosθ,即ρ2=2ρcosθ,化为${C_1}:{x^2}+{y^2}-2x=0$,圆心C1(1,0),半径r1=1.
圆${C_2}:{ρ^2}-2\sqrt{3}ρsinθ+2=0$,化为:${C_2}:{x^2}+{y^2}-2\sqrt{3}y+2=0$,圆心${C_2}(0,\;\sqrt{3})$,半径r2=1$d=|{{C_1}{C_2}}|=\sqrt{{{(1-0)}^2}+{{(0-\sqrt{3})}^2}}=2={r_1}+{r_2}$,
故两圆外切.

点评 本题考查了极坐标方程化为直角坐标方程、两点之间的距离公式、两圆的位置关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若x>0,y>0,且$\frac{2}{x}$+$\frac{8}{y}$=1,求xy及x+y的最小值,何时取到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知p:|2x+1|≤3,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知F1、F2是椭圆C1:$\frac{{x}^{2}}{4}$+y2=1与双曲线C2的两个公共焦点,P是C1,C2一个公共点.若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则C2的离心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过双曲线$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点F作x轴的垂线,交双曲线C于M、N两点,A为左顶点,这∠MAN=θ,双曲线C的离心率为f(θ),则$f(\frac{2π}{3})-f(\frac{π}{3})$=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若将θ视为变量,则以原点为圆心,r为半径的圆可表示为$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ∈[0,2π)),问下列何种表示可表示以(a,b)为圆心,r为半径的圆(  )
A.$\left\{\begin{array}{l}{x=rcosθ-a}\\{y=rsinθ-b}\end{array}\right.$(θ∈[0,2π))B.$\left\{\begin{array}{l}{x=rcosθ+a}\\{y=rsinθ+b}\end{array}\right.$(θ∈[0,2π))
C.$\left\{\begin{array}{l}{x=-rcosθ-a}\\{y=-rsinθ-b}\end{array}\right.$(θ∈[0,2π))D.$\left\{\begin{array}{l}{x=rsinθ-a}\\{y=rcosθ-b}\end{array}\right.$(θ∈[0,2π))

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.等差数列{an}前n项和为Sn,若bn=$\frac{1}{S_n}$,a3b3=$\frac{1}{2}$,S5+S3=21
(1)求Sn
(2)记Tn=$\sum_{i=1}^n{b_i}$,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a,b,c分别为内角A,B,C所对的边,且$\sqrt{3}c=2asinC$.
(1)求角A的大小;
(2)若∠A为锐角,a=2$\sqrt{3}$,S△ABC=2$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2+4cosφ}\\{y=4sinφ}\end{array}\right.$,(φ为参数),以原点O为极点,以x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(Ⅰ)将直线l写成参数方程$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$,(t为参数)的形式,并求曲线C的普通方程;
(Ⅱ)若直线l与曲线C交于A,B两点,点P的直角坐标为(1,0),求|AB|的值.

查看答案和解析>>

同步练习册答案