精英家教网 > 高中数学 > 题目详情
6.求y=(log${\;}_{\frac{1}{2}}$x)2-2log${\;}_{\frac{1}{2}}$x的单调区间.

分析 令t=log${\;}_{\frac{1}{2}}$x,可得y=t2-2t=(t-1)2-1.再利用对数函数、二次函数的单调性的性质,求得函数y的单调区间.

解答 解:令t=log${\;}_{\frac{1}{2}}$x,可得y=t2-2t=(t-1)2-1.
由于函数t在(0,+∞)上是减函数,关于t的二次函数y的图象的对称轴为t=1,
故在区间(0,$\frac{1}{2}$)上,t∈(1,+∞),函数y=(log${\;}_{\frac{1}{2}}$x)2-2log${\;}_{\frac{1}{2}}$x为减函数;
在[$\frac{1}{2}$,+∞),t∈(-∞,1],函数y=(log${\;}_{\frac{1}{2}}$x)2-2log${\;}_{\frac{1}{2}}$x为增函数,
故函数y的减区间为(0,$\frac{1}{2}$),增区间为[$\frac{1}{2}$,+∞).

点评 本题主要考查复合函数的单调性,对数函数、二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=4,则x+2y最小值是(  )
A.5+2$\sqrt{2}$B.2C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果函数f(x)=x-$\frac{1}{3}$sin2x+asinx在区间[0,$\frac{π}{2}$]上递增,则实数a的取值范围是(  )
A.[-1,$\frac{1}{3}$]B.[-1,1]C.[-$\frac{1}{3}$,+∞)D.[-$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.淘宝卖家在某商品的所有买家中,随机选择男女买家各25位进行调查,他们的评分等级如表:
评分等级[0,1](1,2](2,3](3,4](4,5]
男(人数)25954
女(人数)125107
(1)从评分等级为(3,4]的人中随机选取2人,求恰有1人是女性的概率;
(2)规定:评分等级在[0,3]内为不满意该商品,在(3,5]内为满意该商品.完成下列2×2列联表并帮助卖家判断:能否在犯错误的概率不超过0.025的前提下认为满意该商品与性别有关系?
满意不满意总计
16925
81725
总计242650
附参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P=(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.$\frac{3}{2}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线y=e-x在点(x0,$\frac{1}{e}$)处的切线与坐标轴围成的三角形的面积为$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.
(Ⅰ)求此人到达当日空气重度污染的概率;
(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若0<x<π,则函数y=lg(sinx-$\frac{1}{2}$)+$\sqrt{\frac{1}{2}-cosx}$的定义域是(  )
A.[$\frac{π}{3}$,$\frac{2}{3}π$)B.($\frac{π}{6}$,$\frac{5}{6}π$)C.[$\frac{π}{3}$,$\frac{5}{6}π$)D.($\frac{5}{6}π$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F分别为AC,BC的中点,沿EF将△CEF折起,得到如图2所示的四棱锥C′-ABFE
(Ⅰ)求证:AB⊥平面AEC′;
(Ⅱ)当四棱锥C′-ABFE体积取最大值时,
(i)若G为BC′中点,求异面直线GF与AC′所成角;
(ii)在C′-ABFE中AE交BF于C,求二面角A-CC′-B的余弦值.

查看答案和解析>>

同步练习册答案