精英家教网 > 高中数学 > 题目详情

        已知椭圆C的中心在的点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为

   (I)求椭圆C的方程;

   (II)设点Q的从标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

【解】(I) 由题意知:,解得

       ∴ 椭圆的方程为       …………………………  5分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•昌平区一模)已知椭圆C的中心在原点,左焦点为(-
3
,0)
,离心率为
3
2
.设直线l与椭圆C有且只有一个公共点P,记点P在第一象限时直线l与x轴、y轴的交点分别为A、B,且向量
OM
=
OA
+
OB

求:
(I)椭圆C的方程;
(II)|
OM
|
的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,它的一条准线为x=-
5
2
,离心率为
2
5
5

(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆于A、B两点,交y轴于M点,若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

科目:高中数学 来源:江西省泰和中学2012届高三周考数学理科试题 题型:044

已知椭圆C的中心在圆点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线l与椭圆交于A,B两点,△MF1F1的面积为4,△ABF2的周长为8

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:昌平区一模 题型:解答题

已知椭圆C的中心在原点,左焦点为(-
3
,0)
,离心率为
3
2
.设直线l与椭圆C有且只有一个公共点P,记点P在第一象限时直线l与x轴、y轴的交点分别为A、B,且向量
OM
=
OA
+
OB

求:
(I)椭圆C的方程;
(II)|
OM
|
的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,点F1、F2分别是椭圆的左、右焦点,在椭圆C的右准线上的点P(2,),满足线段PF1的中垂线过点F2,直线l:y=kx+m为动直线,且直线l与椭圆C交于不同的两点A、B.

(1)求椭圆C的方程;

(2)若在椭圆C上存在点Q,满足+(O为坐标原点),求实数λ的取值范围;

(3)在(2)的条件下,当λ取何值时,△ABO的面积最大,并求出这个最大值.

查看答案和解析>>

同步练习册答案