精英家教网 > 高中数学 > 题目详情
12.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m•2t+2•$\frac{1}{{2}^{t}}$ (t≥0,并且m>0).
(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;
(2)若物体的温度总不低于2摄氏度,求m的取值范围.

分析 (1)将m=2,θ=5代入θ=m•2t+21-t(t≥0)解指数方程即可求出t的值;
(2)问题等价于m•2t+21-t≥2(t≥0)恒成立,求出m•2t+21-t的最小值,只需最小值恒大于等于2建立关系,解之即可求出m的范围.

解答 解:(1)若m=2,则θ=2•2t+21-t=2(2t+$\frac{1}{{2}^{t}}$),
当θ=5时,2t+$\frac{1}{{2}^{t}}$=$\frac{5}{2}$,令2t=x≥1,则x+$\frac{1}{x}$=$\frac{5}{2}$,即2x2-5x+2=0,解得x=2或x=$\frac{1}{2}$(舍去),此时t=1.
所以经过1分钟,物体的温度为5摄氏度.
(2)物体的温度总不低于2摄氏度,即θ≥2恒成立.亦m•2t+$\frac{2}{2t}$≥2恒成立,
亦即m≥2($\frac{1}{{2}^{t}}$-$\frac{1}{{2}^{2t}}$)恒成立.
令$\frac{1}{2t}$=x,则0<x≤1,∴m≥2(x-x2),
由于x-x2≤$\frac{1}{4}$,∴m≥$\frac{1}{2}$.
因此,当物体的温度总不低于2摄氏度时,m的取值范围是[$\frac{1}{2}$,+∞).

点评 本题主要考查了不等式的实际应用,以及恒成立问题,同时考查了转化与划归的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图所示,在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB═$\sqrt{2}$,AD=2,BC=4,AA1=2,E,F分别是DD1,AA1的中点.
(I)证明:EF∥平面B1C1CB;
(Ⅱ)求BC1与平面B1C1F所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上函数f(x)满足f(1)=1,f′(x)<2,则满足f(x)>2x-1的x的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)判断平面BEG与平面ACH的位置关系.并证明你的结论;
(2)若正方体棱长为1,求三棱锥F-BEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx,g(x)=xe-x
(1)当x∈R时,求函数f(x)的单调递减区间;
(2)若对任意x1∈[1,3],x2∈[0,$\frac{π}{2}$],不等式g(x1)+a+3>f(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,AB=BC=AC=2,AA1=3,点M是B1C1的中点.
(1)求证:AB1∥平面A1MC;
(2)求点B到平面A1MC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a为常数,函数f(x)=xlnx-$\frac{1}{2}$ax2
(1)当a=0时,求函数f(x)的最小值;
(2)若f(x)有两个极值点x1,x2(x1<x2
①求实数a的取值范围;
②求证:x1x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2+2(a-1)x在区间[4,+∞)上是增函数,则实数a的取值范围是(  )
A.a≥-3B.a≤-3C.a≤3D.a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)满足f(x)=f(2-x),x∈R,且当x≤1时,f(x)=x3-x2-4x+4,则方程f(x)=0的所有实数根之和为(  )
A.2B.3C.4D.1

查看答案和解析>>

同步练习册答案