精英家教网 > 高中数学 > 题目详情

【题目】万众瞩目的2018年俄罗斯世界杯决赛于北京时间201871523时在俄罗斯莫斯科的卢日尼基体育场进行.为确保总决赛的顺利进行,组委会决定在比赛地点卢日尼基球场外临时围建一个矩形观众候场区,总面积为(如图所示).要求矩形场地的一面利用体育场的外墙,其余三面用铁栏杆围,并且要在体育馆外墙对面留一个长度为的入口.现已知铁栏杆的租用费用为100元/.设该矩形区域的长为(单位:),租用铁栏杆的总费用为(单位:元).

1)将表示为的函数;

2)试确定,使得租用此区域所用铁栏杆所需费用最小,并求出最小费用.

【答案】1;(2)当时,租用此区域所用铁栏杆所需费用最小费用为2200.

【解析】

1)利用已知条件,直接求解y表示为x的函数,注明定义域;

2)利用基本不等式转化求解最小值,即可确定x,使得租用此区域所用铁栏杆所需费用最小,求出最小费用.

1)依题意有:,其中.

2)由均值不等式可得:

当且仅当,即时,取“”,

综上:当时,租用此区域所用铁栏杆所需费用最小,最小费用为2200

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用一个平行于圆锥底面的平面去截圆锥,截得圆台的母线长为,两底面面积分别为.求:

1)圆台的高;

2)圆台的体积;

3)截得此圆台的圆锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若函数在区间上不是单调函数,求实数的取值范围;

(II)是否存在实数,使得函数图像与直线有两个交点?若存在,求出所有的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某面包店随机收集了面包种类的有关数据,经分类整理得到下表:

面包类型

第一类

第二类

第三类

第四类

第五类

第六类

面包个数

90

60

30

80

100

40

好评率

0.6

0.45

0.7

0.35

0.6

0.5

好评率是指:一类面包中获得好评的个数与该类面包的个数的比值.

1)从面包店收集的面包中随机选取1个,求这个面包是获得好评的第五类面包的概率;

2)从面包店收集的面包中随机选取1个,估计这个面包没有获得好评的概率;

3)面包店为增加利润,拟改变生产策略,这将导致不同类型面包的好评率发生变化.假设表格中只有两类面包的好评率数据发生变化,那么哪类面包的好评率增加0.1,哪类面包的好评率减少0.1,使得获得好评的面包总数与样本中的面包总数的比值达到最大?(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有三点在椭圆上.

1)求椭圆的方程;

2)过点且斜率不为的直线交椭圆两点,在轴上是否存在定点,使得直线的斜率与直线的斜率之积为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象与x轴交于点AB(A在点B的左侧),函数的图象与x轴交于点CD(C在点D的左侧),其中.

(1)求证:函数的图象交点落在一条定直线上;

(2),求abk应满足的关系式:

(3)是否存在函数,使得BC为线段AD的三等分点?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年7月24日,长春长生生物科技有限责任公司先被查出狂犬病疫苗生产记录造假,后又被测出百白破疫苗“效价测定”项不符合规定, 由此引发的疫苗事件牵动了无数中国人的心.疫苗直接用于健康人群,尤其是新生儿和青少年,与人民的健康联系紧密.因此,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品研究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:

未感染病毒

感染病毒

总计

未注射疫苗

20

x

A

注射疫苗

30

y

B

总计

50

50

100

现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为

(1)求2×2列联表中的数据的值;

(2)能否有99.9%把握认为注射此种疫苗有效?

(3)现从感染病毒的小白鼠中任意抽取三只进行病理分析,记已注射疫苗的小白鼠只数为,求的分布列和数学期望.

附:,n=a+b+c+d.

P(K2≥k0)

0.05

0.01

0.005

0.001

k0

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点是四边形的中心,关于直线,下列说法正确的是( )

A. B.

C. 平面D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),在同一个周期内,当时,取得最大值,当时,取得最小值.

(1)求函数的解析式,并求[0]上的单调递增区间.

(2)将函数的图象向左平移个单位长度,再向下平移个单位长度,得到函数的图象,方程2个不同的实数解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案