精英家教网 > 高中数学 > 题目详情
17.设a>b>c,方程$\frac{1}{x-a}$+$\frac{1}{x-b}$+$\frac{1}{x-c}$=0的两根为x1,x2(x1<x2),试确定a,b,c,x1,x2的大小关系.

分析 由已知中$\frac{1}{x-a}$+$\frac{1}{x-b}$+$\frac{1}{x-c}$=0的两根为x1,x2,故$\frac{1}{{x}_{1}-a}+\frac{1}{{x}_{1}-b}+\frac{1}{{x}_{1}-c}=0$,且$\frac{1}{{x}_{2}-a}+\frac{1}{{x}_{2}-b}+\frac{1}{{x}_{2}-c}=0$,进而得到结论.

解答 解:∵$\frac{1}{x-a}$+$\frac{1}{x-b}$+$\frac{1}{x-c}$=0的两根为x1,x2(x1<x2),
∴$\frac{1}{{x}_{1}-a}+\frac{1}{{x}_{1}-b}+\frac{1}{{x}_{1}-c}=0$,且$\frac{1}{{x}_{2}-a}+\frac{1}{{x}_{2}-b}+\frac{1}{{x}_{2}-c}=0$,
故$\frac{1}{{x}_{1}-a},\frac{1}{{x}_{1}-b},\frac{1}{{x}_{1}-c}$至少有一个小于0,又至少一个大于0,
$\frac{1}{{x}_{2}-a},\frac{1}{{x}_{2}-b},\frac{1}{{x}_{2}-c}$至少有一个小于0,又至少一个大于0,
又由a>b>c,x1<x2,得:a>x2>b>x1>c.

点评 本题考查的知识点为不等式的性质,实数的性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设D、E是△ABC所在平面内不同的两点,且$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{AE}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,则△ABE和△ABD的面积比$\frac{{S}_{△ABE}}{{S}_{△ABD}}$为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,扇形AOB是一个植物园的平面示意图,其中∠AOB=$\frac{2π}{3}$,半径OA=OB=1km,为了便于游客观赏,拟在圆内铺设一条从入口A到出口B的观赏道路,道路由弧$\widehat{AC}$,线段CD,线段DE和弧$\widehat{EB}$组成,且满足:$\widehat{AC}$=$\widehat{EB}$,CD∥AO.DE∥OB,OD∈[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{6}}{3}$](单位:km),设∠AOC=θ.
(1)用θ表示CD的长度,并求出θ的取值范围;
(2)当θ为何值时,观赏道路最长?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,粗线画出的是一个正方体被两个平行平面所截后的几何体的三视图,图中三个正方形的边长为4,则此几何体的表面积为(  )
A.40+8$\sqrt{3}$B.48+8$\sqrt{3}$C.40+16$\sqrt{3}$D.48+16$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将所有正偶数按如图方式进行排列,则2 016位于(  )
A.第30行B.第31行C.第32行D.第33行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器--商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为(  )
A.1.2B.1.6C.1.8D.2.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M和N间的关系为M∩N=M,那么下列必定成立的是(  )
A.UN∩M=∅B.UM∩N=∅C.UM∩∁UN=∅D.UM∪∁UN=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,M,N,Q分别是线段AD1,B1C,C1D1上的动点,当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN的体积为(  )
A.$\frac{1}{2}{a^3}$B.$\frac{1}{4}{a^3}$C.$\frac{{\sqrt{2}}}{4}{a^3}$D.$\frac{1}{12}{a^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)根据频率直方分布图计算该班50位学生期中考试数学成绩的平均数与中位数(精确到个位);
(3)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为X,求P(X=1).

查看答案和解析>>

同步练习册答案