(I)因为f(x)为奇函数,所以f(-x)+f(x)=0恒成立,据此可求出m的值.
(II)由(I)可求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317057561645.png)
,讨论a,根据复合函数的单调性可判断f(x)的单调性.
(III)解本小题的关键是因为对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705304433.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317058341423.png)
,
所以对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705304433.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317058811874.png)
,
所以对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705304433.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317059431017.png)
,
所以对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705304433.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317060211013.png)
,从而转化为求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706037754.png)
的最小值,再解关于t的不等式即可.
解:(I)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317060681380.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317060842899.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706115907.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706130661.png)
…………………………………3分
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705709688.png)
…………………………………1分
(II)由(I)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317061771794.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706271421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317063181220.png)
在R上为减函数……………3分
(III)又因为对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705304433.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317063641337.png)
所以对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705304433.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317064111866.png)
所以对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705304433.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317059431017.png)
所以对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705304433.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317060211013.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317065362328.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706552881.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706567471.png)
……………………………1分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317065831114.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706614835.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317066301366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706661901.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317066921119.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317067231191.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706739966.png)
……………………………2分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706754900.png)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232317067701108.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231706801724.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231705740522.png)
………………………………………2分