【题目】在平面直角坐标系中,曲线上的动点到点的距离减去到直线的距离等于1.
(1)求曲线的方程;
(2)若直线 与曲线交于,两点,求证:直线与直线的倾斜角互补.
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点与抛物线的焦点重合,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的直线与椭圆交于两点、,在轴上是否存在点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:
某位同学分别用两种模型:①②进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于):
经过计算得,.
(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.
(2)根据(1)的判断结果及表中数据建立y关于x的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)
附:归直线的斜率和截距的最小二乘估计公式分别为:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线:,过抛物线焦点且与轴垂直的直线与抛物线相交于、两点,且的周长为.
(1)求抛物线的方程;
(2)若直线过焦点且与抛物线相交于、两点,过点、分别作抛物线的切线、,切线与相交于点,求:的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在椭圆上,为坐标原点,直线的斜率与直线的斜率乘积为.
(1)求椭圆的方程;
(2)不经过点的直线(且)与椭圆交于,两点,关于原点的对称点为(与点不重合),直线,与轴分别交于两点,,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知点,过点作直线、与圆:和抛物线:都相切.
(1)求抛物线的两切线的方程;
(2)设抛物线的焦点为,过点的直线与抛物线相交于、两点,与抛物线的准线交于点(其中点靠近点),且,求与的面积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,为梯形,,,,,,.
(1)在线段上有一个动点,满足且平面,求实数的值;
(2)已知与的交点为,若,且平面,求二面角平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,,E为AB的中点.将沿DE翻折,得到四棱锥.设的中点为M,在翻折过程中,有下列三个命题:
①总有平面;
②线段BM的长为定值;
③存在某个位置,使DE与所成的角为90°.
其中正确的命题是_______.(写出所有正确命题的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com