精英家教网 > 高中数学 > 题目详情
19.已知x=log32,求33x的值.

分析 x=log32,化为3x=2,代入33x=(3x3即可得出.

解答 解:∵x=log32,
∴3x=2,
∴33x=(3x3=23=8.

点评 本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,ABCD是边长为2的正方形,ED=1,DE⊥平面ABCD,EF∥BD,且EF=$\frac{1}{2}$BD.
(1)求证:BF∥平面ACE;
(2)求证平面ACE⊥平面BDEF;
(3)求直线AD与平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB,且sinA•cosA=$\frac{\sqrt{3}}{4}$,则此三角形为(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的定义域:
(1)y=$\frac{\root{3}{{x}^{2}-1}}{x-6}$.   
(2)y=(x-3)0+$\sqrt{1+x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.实数x,y满足$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,则xy的最小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{bn}的前n项的和为Sn,且b1=1,bn+1=3Sn(n∈N*
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设cn=$\frac{n}{{b}_{n}}$,探究数列{cn}中是否存在最大项?并给以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.正四面体ABCD中,AO⊥平面BCD,垂足为O,设M是线段AO上一点,且∠BMC=90°是直角,则$\frac{AM}{MO}$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\sqrt{\frac{x+1}{x-2}}$的定义域为集合A,函数g(x)=$\sqrt{{x^2}-(2a+1)x+{a^2}+a}$的定义域为集合B.
(1)求集合A、B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$\sqrt{x+2}+\sqrt{1-x}$有意义,则函数y=x2+3x-5的值域是$[{-\frac{29}{4},-1}]$.

查看答案和解析>>

同步练习册答案