精英家教网 > 高中数学 > 题目详情

【题目】下列说法中,正确的是
·(1)任取x>0,均有3x>2x
·(2)当a>0,且a≠1时,有a3>a2
·(3)y=( x是减函数;
·(4)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
·(5)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;
·(6)y=x2﹣2|x|﹣3的递增区间为[1,+∞).

【答案】(1)、(3)
【解析】解:(1)当x>0, =( x>1,即恒有3x>2x;故(1)正确,(2)当a= 时,满足a>0,且a≠1时,但a3>a2不成立,故(2)错误,(3)y=( x=( x为减函数,故(3)正确,(4)函数f(x)=﹣ 时,满足函数f(x)在x>0时是增函数,x<0也是增函数,但f(x)不是单调函数,故(4)错误;(5)当a=0时,满足函数f(x)=ax2+bx+2=2与x轴没有交点,此时b2﹣8a<0且a>0不成立,故(6)错误(6)当x<0时,y=x2﹣2|x|﹣3=x2+2x﹣3,此时函数的对称性x=﹣1,则当﹣1<x<0时,函数为增函数,
当x≥0时,y=x2﹣2|x|﹣3=x2﹣2x﹣3,此时函数的对称性x=1,则当x≥1时,函数为增函数,
即函数的递增区间为[1,+∞)和[﹣1,0],故(6)错误,
所以答案是:(1)、(3)
【考点精析】通过灵活运用命题的真假判断与应用,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点M(﹣ ),N是圆C:(x﹣ 2+y2=16(C为圆心) 上的动点,MN的垂直平分线与NC交于点E.
(1)求动点E的轨迹方程C1
(2)直线l与轨迹C1交于P,Q两点,与抛物线C2:x2=4y交于A,B两点,且抛物线C2在点A,B处的切线垂直相交于S,设点S到直线l的距离为d,试问:是否存在直线l,使得d= ?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>0, 是R上的偶函数.
(1)求a的值;
(2)证明f(x)在(0,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆C1 的离心率等于 ,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上.
(1)求抛物线C2的方程;
(2)求过点M(﹣1,0)的直线l与抛物线C2交E、F两点,又过E、F作抛物线C2的切线l1、l2 , 当l1⊥l2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b∈R,且a≠2,定义在区间(﹣b,b)内的函数f(x)=lg 是奇函数.
(1)求a的值;
(2)求b的取值范围;
(3)用定义讨论并证明函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f′′(x)是f′(x)的导数,若方程f′′(x)有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数f(x)= x3 x2+3x﹣ ,请你根据这一发现,计算f( )+f( )+f( )+…+f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)是定义在R上的增函数,下列函数中
①y=[f(x)]2是增函数;
②y= 是减函数;
③y=﹣f(x)是减函数;
④y=|f(x)|是增函数;
其中正确的结论是(
A.③
B.②③
C.②④
D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={y|y=log2x,x≥4},B={y|y=( x , ﹣1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a﹣1},且C∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案