精英家教网 > 高中数学 > 题目详情
双曲线
x2
3
-y2=1的两条渐近线所成的锐角为
 
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:求出双曲线的渐近线方程,再由两直线的夹角公式,计算即可得到所求锐角.
解答: 解:双曲线
x2
3
-y2=1的两条渐近线方程为y=±
3
3
x,
则两条渐近线所成的锐角的正切为|
3
3
-(-
3
3
)
1+
3
3
×(-
3
3
)
|=
3

则有所求锐角为60°.
故答案为:60°.
点评:本题考查双曲线的方程和性质,考查渐近线方程的求法,考查两直线的夹角公式,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,∠A=
π
2
,AB=2,AC=4,
AF
=
1
2
AB
CE
=
1
2
CA
BD
=
1
4
BC
,则
DE
DF
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|(x-3)(x-6)≤0,x∈Z},Q={5,7},下列结论成立的是(  )
A、Q⊆P
B、P∪Q=P
C、P∩Q=Q
D、P∩Q={5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=
1
2
n(n+1)
(1)求数列{an}的通项公式;
(2)若b1=1,2bn-bn-1=0,cn=anbn,数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆ρ2-4ρcosθ+3=0上的动点P到直线θ=
π
3
(ρ∈R)的距离最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2-2y-1=0关于直线x-2y-3=0对称的圆方程是(  )
A、(x-2)2+(y+3)2=
1
2
B、(x-2)2+(y+3)2=2
C、(x+2)2+(y-3)2=
1
2
D、(x+2)2+(y-3)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式ax+2>(3-a)x-2
(1)若a∈R,求不等式的解集A;
(2)设不等式|2x+1|<2的解集为B,存在实数a使得(1)中求得的集合A满足条件A∩B={x|-1<x<
1
2
}
,求a及此时的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地并排摆放到书架的同一层上,则同一科目的书都相邻的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将4个新转入的学生分到高二的4个指定的班,每班分入的人数不限
(1)求这4个班各分到1个新生的概率
(2)求至少有1个班未分到新生的概率
(3)求其中恰有1个班未分到新生的概率.

查看答案和解析>>

同步练习册答案