精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明: .

【答案】(1)见解析;(2);(3)见解析.

【解析】试题分析:(1)对函数求导得进行分类讨论,即可得到函数的单调区间;(2)由(1)可得, 上是增函数 不成立,故1)可得即可求出的取值范围;(3)由(2)知,当恒成立,即,进而换元可得所以即可得证.

试题解析:(1)定义域为

上单调递增

所以,当时, ,当时,

综上:若 上单调递增;

上单调递增,在上单调递减

2)由(1)知, 时, 不可能成立;

恒成立 ,得

综上, .

3)由(2)知,当时,有上恒成立,即

,得,即

,得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在下列各函数中,最小值等于2的函数是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义非零向量的“相伴函数”为),向量称为函数的“相伴向量”(其中为坐标原点),记平面内所有向量的“相伴函数”构成的集合为.

(1)已知),求证:,并求函数的“相伴向量”模的取值范围;

(2)已知点)满足,向量的 “相伴函数”处取得最大值,当点运动时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.
(1)请将l表示成关于α的函数l=f(α);
(2)问当α为何值时l最小?并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分10分)已知等差数列{an}满足a1+a2=10,a4-a3=2.

(1)求{an}的通项公式.

(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出s的值为(  )

A.8
B.9
C.27
D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京市某年11月1日—20日监测最高最低温度及差值数据如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

最高温度(℃)

20

16

14

20

20

20

18

15

12

11

12

12

13

9

8

6

13

11

10

14

最低温度(℃)

5

4

2

4

9

6

9

3

-1

0

5

1

4

-1

-4

-2

-1

0

1

3

差值(℃)

15

12

12

16

11

14

9

12

13

11

7

11

9

10

12

8

14

11

9

11

(Ⅰ)完成下面的频率分布表及频率分布直方图,并写出频率分布直方图中的值;

(Ⅱ)从日温差大于等于的这些天中,随机选取2天.求这两天中至少有一天的温差在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数

无零点,求实数k的取值范围;

有两个相异零点,求证:

查看答案和解析>>

同步练习册答案