【题目】用半径为R的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为( )
A.
B.
C.
D.
【答案】C
【解析】解:设圆柱的高为x,则其为内接矩形的一边长,那么另一边长为y=2 , ∴圆柱的体积V(X)=πy2x= =π(﹣x3+4R2x),(0<x<2R),
∴V′(x)=π(﹣3x2+4R2),
列表如下:
x | (0, ) | ( ,2R) | |
V′(x) | + | 0 | ﹣ |
∴当x= 时,此圆柱体积最大.
∴圆柱体体积最大时,该圆内接矩形的两条边长分别为 和2 = ,
∴圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为:
= .
故选:C.
设圆柱的高为x,则其为内接矩形的一边长,那么另一边长为y=2 ,利用导数性质求出当x= 时,此圆柱体积最大.由此能求出圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比.
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在区间(0,+∞)内的单调函数,且对x∈(0,∞),都有f[f(x)﹣lnx]=e+1,设f′(x)为f(x)的导函数,则函数g(x)=f(x)﹣f′(x)的零点个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (a,b∈R,且a≠0,e为自然对数的底数).
(1)若曲线f(x)在点(e,f(e))处的切线斜率为0,且f(x)有极小值,求实数a的取值范围.
(2)①当 a=b=l 时,证明:xf(x)+2<0; ②当 a=1,b=﹣1 时,若不等式:xf(x)>e+m(x﹣1)在区间(1,+∞)内恒成立,求实数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为(3, ).曲线C的参数方程为ρ=2cos(θ﹣ )(θ为参数).
(Ⅰ)写出点P的直角坐标及曲线C的直角坐标方程;
(Ⅱ)若Q为曲线C上的动点,求PQ的中点M到直线l:2ρcosθ+4ρsinθ= 的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的离心率为 ,直线l:y=x+2与以原点为圆心、椭圆C的短半轴为半径的圆O相切.
(1)求椭圆C的方程;
(2)过椭圆C的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形,求直线m的斜率k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com